9 resultados para Coordination of intersections
em Digital Commons at Florida International University
Resumo:
Coordination of business processes is the management of dependencies where dependencies constrain how the tasks are performed. It has been traditionally done in an intuitive fashion, without paying much attention to the coordination load. Coordination load is being defined as the ratio between the time spent on coordination activities and the total task time. Previous efforts to understand and analyze coordination have resulted in mostly qualitative approaches to categorize and recommend coordination strategies. This research seeks to answer two questions: (1) How can we analyze process coordination problems to improve overall performance? (2) What guidance can we provide to reduce the coordination load of the process and consequently improve the organization's performance? Thus, this effort developed a quantitative measure for coordination load of business processes and a methodology to apply such measure. ^ This effort used a management simulation game to have a controlled laboratory environment enabling the manipulation of the task factors variability, analyzability, and interdependence to measure their impact on coordination load. The hypothesis was that the more variable, non-analyzable, and interdependent a process, the higher the coordination load, and that a higher coordination load would have a negative impact on performance. Coordination load was measured via the surrogate coordination time, and performance via profit. ^ A 22 x 31 full factorial design, with two replicates, was run to observe the impact on the variables coordination time and profit. Properly validated spreadsheets and questionnaires were used as data collection instruments for each scenario. The experimental results indicate that lower task analyzability (ρ=0.036) and higher task interdependence (ρ=0.000) lead to higher coordination load, and higher levels of task variability (ρ=0.049) lead to lower performance. However, contrary to the hypotheses postulated by this work, coordination load did not prove to be strong predictor of performance (correlation of -0.086). ^ These findings from the laboratory experiment and other lessons learned were incorporated to develop a quantitative measure, a tool (survey) to use to gather data for the variables in the measures, and a methodology to quantify coordination load of production business processes. The practicality of the methodology is demonstrated with an example.^
Study of the physical properties of metals and oxides at extreme pressure and temperature conditions
Resumo:
The high-pressure and temperature investigations on transition metals, metal doped-oxide system, nanocrystalline materials are presented in this dissertation. The metal-doped oxide systems are technologically important because of their applications, e.g. LSC, opto electronic applications, luminescence from lasers, etc., and from the earth sciences point of view, e.g. the study of trace elements in the MgO-SiO2 system, which accounts for 50% of the Earth's chondritic model. We have carried out thorough investigations on Cr2O3 and on chromium bearing oxides at high PT-conditions using in situ X-ray diffractometry and florescence spectroscopy techniques. Having obtained exciting results, an attempt to focus on the mechanism of the coordination of transition metals in oxides has been made. Additionally, the florescence from the metals in host oxides was found to be helpful to obtain information on structural variations like changes in the coordination of the doped element, formation of new phases, the diffusion processes. The possible reactions taking place at extreme conditions in the MgO-SiO2 system has been observed using florescence as markers. A new heating assemblage has been designed and fabricated for a precise determination of temperature at high pressures. An equation combining pressure shifts of ruby wavelength and temperature has been proposed. We observed that the compressibility of nanocrystalline material (MgO and Ni) is independent of crystallite size. A reduction in the transition pressure of nanocrystalline ceria at high-pressure has been observed as compare to the corresponding bulk material. ^
Resumo:
A major challenge of modern teams lies in the coordination of the efforts not just of individuals within a team, but also of teams whose efforts are ultimately entwined with those of other teams. Despite this fact, much of the research on work teams fails to consider the external dependencies that exist in organizational teams and instead focuses on internal or within team processes. Multi-Team Systems Theory is used as a theoretical framework for understanding teams-of-teams organizational forms (Multi-Team Systems; MTS's); and leadership teams are proposed as one remedy that enable MTS members to dedicate needed resources to intra-team activities while ensuring effective synchronization of between-team activities. Two functions of leader teams were identified: strategy development and coordination facilitation; and a model was developed delineating the effects of the two leader roles on multi-team cognitions, processes, and performance.^ Three hundred eighty-four undergraduate psychology and business students participated in a laboratory simulation that modeled an MTS; each MTS was comprised of three, two-member teams each performing distinct but interdependent components of an F-22 battle simulation task. Two roles of leader teams supported in the literature were manipulated through training in a 2 (strategy training vs. control) x 2 (coordination training vs. control) design. Multivariate analysis of variance (MANOVA) and mediated regression analysis were used to test the study's hypotheses. ^ Results indicate that both training manipulations produced differences in the effectiveness of the intended form of leader behavior. The enhanced leader strategy training resulted in more accurate (but not more similar) MTS mental models, better inter-team coordination, and higher levels of multi-team (but not component team) performance. Moreover, mental model accuracy fully mediated the relationship between leader strategy and inter-team coordination; and inter-team coordination fully mediated the effect of leader strategy on multi-team performance. Leader coordination training led to better inter-team coordination, but not to higher levels of either team or multi-team performance. Mediated Input-Process-Output (I-P-O) relationships were not supported with leader coordination; rather, leader coordination facilitation and inter-team coordination uniquely contributed to component team and multi-team level performance. The implications of these findings and future research directions are also discussed. ^
Resumo:
Introduction: The United States today has become "meeting-conscious." The complexity of conducting business has led to the need for sophisticated coordination of decision-making processes on all levels of the organization. Company meetings have played an increasingly important role in the success and future of many companies. Strategies and decisions are developed at meetings that can determine future policies of crucial importance. Executive training can mean the difference in whether the company will even survive. Large and growing companies have increased their off-premise meeting budgets annually in spite of the state of the economy. however, the rising costs of travel and lodging have made management monitor these budgets more closely than ever. Thus, the need to use every dollar efficiently has compelled companies to examine newer methods of running meetings and alternatives to the usage of typical off-premise meeting facilities. The importance of off-premise meetings in the United States economy has greatly increased due to the billions of dollars spent annually. These factors make it vital to explore the effectiveness of time and monetary expenditures. Up until the mid-1960's, company meetings were held in facilities of various design and purpose, none of which were specifically designed for the small to medium corporate meeting. Upon gathering information concerning the meetings market and the corporate meeting planner, certain individuals endeavored to change the situation. This study is designed to investigate this new concept, which will hereafter be referred to as "conference center." For the purpose of this study, the following two definitions will be used. 1. Conference center - that meeting facility primarily marketing its facilities for the small to medium-sized corporate meeting. The center is operated by specialists aware of market needs in as much detail as are those people working for the company involved. On-premise sleeping rooms are not mandatory provided such facilities are within easy access. 2. Meeting planner - that person within an organization who has primary responsibility for arranging off-premise meetings and all other related items necessary for meeting effectiveness. This person may spend anywhere from 10 to 100l of his time in this capacity. The conference center has effectively satisfied the need for specialized corporate meeting facilities. This study will show the depth of the corporate meetings market and trace the growth and development of this relatively new conference center concept. Information will also be compiled on the top centers in the country. It is hoped that by presenting this research meeting planners will become more aware of the nature and location of these centers, especially for use by the small to medium-sized company. Such exposure of the centers will hopefully increase existing demand and enable the construction of new, innovative centers.
Resumo:
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
Resumo:
Rapid advances in electronic communication devices and technologies have resulted in a shift in the way communication applications are being developed. These new development strategies provide abstract views of the underlying communication technologies and lead to the so-called user-centric communication applications. One user-centric communication (UCC) initiative is the Communication Virtual Machine (CVM) technology, which uses the Communication Modeling Language (CML) for modeling communication services and the CVM for realizing these services. In communication-intensive domains such as telemedicine and disaster management, there is an increasing need for user-centric communication applications that are domain-specific and that support the dynamic coordination of communication services commonly found in collaborative communication scenarios. However, UCC approaches like the CVM offer little support for the dynamic coordination of communication services resulting from inherent dependencies between individual steps of a collaboration task. Users either have to manually coordinate communication services, or reply on a process modeling technique to build customized solutions for services in a specific domain that are usually costly, rigidly defined and technology specific. ^ This dissertation proposes a domain-specific modeling approach to address this problem by extending the CVM technology with communication-specific abstractions of workflow concepts commonly found in business processes. The extension involves (1) the definition of the Workflow Communication Modeling Language (WF-CML), a superset of CML, and (2) the extension of the functionality of CVM to process communication-specific workflows. The definition of WF-CML includes the meta-model and the dynamic semantics for control constructs and concurrency. We also extended the CVM prototype to handle the modeling and realization of WF-CML models. A comparative study of the proposed approach with other workflow environments validates the claimed benefits of WF-CML and CVM.^