20 resultados para Control and Optimization

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The total time a customer spends in the business process system, called the customer cycle-time, is a major contributor to overall customer satisfaction. Business process analysts and designers are frequently asked to design process solutions with optimal performance. Simulation models have been very popular to quantitatively evaluate the business processes; however, simulation is time-consuming and it also requires extensive modeling experiences to develop simulation models. Moreover, simulation models neither provide recommendations nor yield optimal solutions for business process design. A queueing network model is a good analytical approach toward business process analysis and design, and can provide a useful abstraction of a business process. However, the existing queueing network models were developed based on telephone systems or applied to manufacturing processes in which machine servers dominate the system. In a business process, the servers are usually people. The characteristics of human servers should be taken into account by the queueing model, i.e. specialization and coordination. ^ The research described in this dissertation develops an open queueing network model to do a quick analysis of business processes. Additionally, optimization models are developed to provide optimal business process designs. The queueing network model extends and improves upon existing multi-class open-queueing network models (MOQN) so that the customer flow in the human-server oriented processes can be modeled. The optimization models help business process designers to find the optimal design of a business process with consideration of specialization and coordination. ^ The main findings of the research are, first, parallelization can reduce the cycle-time for those customer classes that require more than one parallel activity; however, the coordination time due to the parallelization overwhelms the savings from parallelization under the high utilization servers since the waiting time significantly increases, thus the cycle-time increases. Third, the level of industrial technology employed by a company and coordination time to mange the tasks have strongest impact on the business process design; as the level of industrial technology employed by the company is high; more division is required to improve the cycle-time; as the coordination time required is high; consolidation is required to improve the cycle-time. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-molecular interactions exist ubiquitously in all biological systems. This dissertation project was to construct a powerful surface plasmon resonance (SPR) sensor. The SPR system is used to study bio-molecular interactions in real time and without labeling. Surface plasmon is the oscillation of free electrons in metals coupled with surface electromagnetic waves. These surface electromagnetic waves provide a sensitive probe to study bio-molecular interactions on metal surfaces. This project resulted in the successful construction and optimization of a homemade SPR sensor and the development of several new powerful protocols to study bio-molecular interactions. It was discovered through this project that the limitations of earlier SPR sensors are related not only to the instrumentation design and operating procedures, but also to the complex behaviors of bio-molecules on sensor surfaces that were very different from that in solution. Based on these discoveries the instrumentation design and operating procedures were fully optimized. A set of existing sensor surface treatment protocols were tested and evaluated and new protocols were developed in this project. The new protocols have demonstrated excellent performance to study biomolecular interactions. The optimized home-made SPR sensor was used to study protein-surface interactions. These protein-surface interactions are responsible for many complex organic cell activities. The co-existence of different driving forces and their correlation with the structure of the protein and the surface make the understanding of the fundamental mechanism of protein-surface interactions a very challenging task. Using the improved SPR sensor, the electrostatic interaction and hydrophobic interaction were studied separately. The results of this project directly confirmed the theoretical predictions for electrostatic force between the protein and surface. In addition, this project demonstrated that the strength of the protein-surface hydrophobic interaction does not solely depend on the hydrophobicity as reported earlier. Surface structure also plays a significant role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate to what degree the presence of hypertension (HTN) and poor glycemic control (GC) influences the likelihood of having microalbuminuria (MAU) among Cuban Americans with type 2 diabetes (T2D).Methods: A cross-sectional study conducted in Cuban Americans (n = 179) with T2D. Participants were recruited from a randomly generated mailing list purchased from KnowledgeBase Marketing, Inc. Blood pressure (BP) was measured twice and averaged using an adult size cuff. Glycosylated hemoglobin (A1c) levels were measured from whole blood samples with the Roche Tina-quant method. First morning urine samples were collected from each participant to determine MAU by a semiquantitative assay (ImmunoDip).Results: MAU was present in 26% of Cuban Americans with T2D. A significantly higher percentage of subjects with MA had HTN (P = 0.038) and elevated A1C (P = 0.002) than those with normoalbuminuria. Logistic regression analysis showed that after controlling for covariates, subjects with poor GC were 6.76 times more likely to have MAU if they had hypertension compared with those without hypertension (P = 0.004; 95% confidence interval [CI]: 1.83, 23.05). Conclusion: The clinical significance of these findings emphasizes the early detection of MAU in this Hispanic subgroup combined with BP and good GC, which are fundamentals in preventing and treating diabetes complications and improving individuals’ renal and cardiovascular outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Men, particularly minorities, have higher rates of diabetes as compared with their counterparts. Ongoing diabetes self-management education and support by specialists are essential components to prevent the risk of complications such as kidney disease, cardiovascular diseases, and neurological impairments. Diabetes self-management behaviors, in particular, as diet and physical activity, have been associated with glycemic control in the literature. Recommended medical care for diabetes may differ by race/ethnicity. This study examined data from the National Health and Nutrition Examination Surveys, 2007 to 2010 for men with diabetes (N = 646) from four racial/ethnic groups: Mexican Americans, other Hispanics, non-Hispanic Blacks, and non-Hispanic Whites. Men with adequate dietary fiber intake had higher odds of glycemic control (odds ratio = 4.31, confidence interval [1.82, 10.20]), independent of race/ethnicity. There were racial/ethnic differences in reporting seeing a diabetes specialist. Non-Hispanic Blacks had the highest odds of reporting ever seeing a diabetes specialist (84.9%) followed by White non-Hispanics (74.7%), whereas Hispanics reported the lowest proportions (55.2% Mexican Americans and 62.1% other Hispanics). Men seeing a diabetes specialist had the lowest odds of glycemic control (odds ratio = 0.54, confidence interval [0.30, 0.96]). The results of this study suggest that diabetes education counseling may be selectively given to patients who are not in glycemic control. These findings indicate the need for examining referral systems and quality of diabetes care. Future studies should assess the effectiveness of patient-centered medical care provided by a diabetes specialist with consideration of sociodemographics, in particular, race/ethnicity and gender.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trend of green consumerism and increased standardization of environmental regulations has driven multinational corporations (MNCs) to seek standardization of environmental practices or at least seek to be associated with such behavior. In fact, many firms are seeking to free ride on this global green movement, without having the actual ecological footprint to substantiate their environmental claims. While scholars have articulated the benefits from such optimization of uniform global green operations, the challenges for MNCs to control and implement such operations are understudied. For firms to translate environmental commitment to actual performance, the obstacles are substantial, particularly for the MNC. This is attributed to headquarters' (HQ) control challenges (1) in managing core elements of the corporate environmental management (CEM) process and specifically matching verbal commitment and policy with ecological performance and by (2) the fact that the MNC operates in multiple markets and the HQ is required to implement policy across complex subsidiary networks consisting of diverse and distant units. Drawing from the literature on HQ challenges of MNC management and control, this study examines (1) how core components of the CEM process impact optimization of global environmental performance (GEP) and then uses network theory to examine how (2) a subsidiary network's dimensions can present challenges to the implementation of green management policies. It presents a framework for CEM which includes (1) MNCs' Verbal environmental commitment, (2) green policy Management which guides standards for operations, (3) actual environmental Performance reflected in a firm's ecological footprint and (4) corporate environmental Reputation (VMPR). Then it explains how an MNC's key subsidiary network dimensions (density, diversity, and dispersion) create challenges that hinder the relationship between green policy management and actual environmental performance. It combines content analysis, multiple regression, and post-hoc hierarchal cluster analysis to study US manufacturing MNCs. The findings support a positive significant effect of verbal environmental commitment and green policy management on actual global environmental performance and environmental reputation, as well as a direct impact of verbal environmental commitment on green policy management. Unexpectedly, network dimensions were not found to moderate the relationship between green management policy and GEP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research pursued the conceptualization and real-time verification of a system that allows a computer user to control the cursor of a computer interface without using his/her hands. The target user groups for this system are individuals who are unable to use their hands due to spinal dysfunction or other afflictions, and individuals who must use their hands for higher priority tasks while still requiring interaction with a computer. ^ The system receives two forms of input from the user: Electromyogram (EMG) signals from muscles in the face and point-of-gaze coordinates produced by an Eye Gaze Tracking (EGT) system. In order to produce reliable cursor control from the two forms of user input, the development of this EMG/EGT system addressed three key requirements: an algorithm was created to accurately translate EMG signals due to facial movements into cursor actions, a separate algorithm was created that recognized an eye gaze fixation and provided an estimate of the associated eye gaze position, and an information fusion protocol was devised to efficiently integrate the outputs of these algorithms. ^ Experiments were conducted to compare the performance of EMG/EGT cursor control to EGT-only control and mouse control. These experiments took the form of two different types of point-and-click trials. The data produced by these experiments were evaluated using statistical analysis, Fitts' Law analysis and target re-entry (TRE) analysis. ^ The experimental results revealed that though EMG/EGT control was slower than EGT-only and mouse control, it provided effective hands-free control of the cursor without a spatial accuracy limitation, and it also facilitated a reliable click operation. This combination of qualities is not possessed by either EGT-only or mouse control, making EMG/EGT cursor control a unique and practical alternative for a user's cursor control needs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many people use smoking as a weight control mechanism and do not want to quit because they fear weight gain. These weight-concerned smokers tend to be female, are significantly less likely to stop smoking, are less likely to join smoking cessation programs, and will relapse more often than smokers who are not weight-concerned. Research suggests that a woman’s confidence in her ability to control her weight after quitting relates positively with her intention to quit smoking. Likewise, success in smoking cessation has been associated with increased self-efficacy for weight control. It has been shown that success in changing one negative health behavior may trigger success in changing another, causing a synergistic effect. Recently research has focused on interventions for weight-concerned smokers who are ready to quit smoking. The present study investigated the effect of a cognitive based weight control program on self-efficacy for weight control and the effect on smoking behavior for a group of female weight concerned smokers. Two hundred and sixteen subjects who wanted to lose weight but who were not ready to quit smoking were recruited to participate in a 12-week, cognitive-behavioral weight control program consisting of twelve one-hour sessions. Subjects were randomly assigned to either (1) the weight-control program (intervention group), or (2) the control group. Results of this study demonstrated that subjects in the intervention group increased self-efficacy for weight control, which was associated with improved healthy eating index scores, weight loss, increased self-efficacy for quitting smoking, a decrease in number of cigarettes smoked and triggered positive movement in stage of change towards smoking cessation compared to the control subjects. For these subjects, positive changes in self-efficacy for one behavior (weight control) appeared to have a positive effect on their readiness to change another health behavior (smoking cessation). Further study of the psychological variables that influence weight-concerned female smokers’ decisions to initiate changes in these behaviors and their ability to maintain those changes are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite research showing the benefits of glycemic control, it remains suboptimal among adults with diabetes in the United States. Possible reasons include unaddressed risk factors as well as lack of awareness of its immediate and long term consequences. The objectives of this study were to, using cross-sectional data, (1) ascertain the association between suboptimal (Hemoglobin A1c (HbA1c) .7%), borderline (HbA1c 7-8.9%), and poor (HbA1c .9%) glycemic control and potentially new risk factors (e.g. work characteristics), and (2) assess whether aspects of poor health and well-being such as poor health related quality of life (HRQOL), unemployment, and missed-work are associated with glycemic control; and (3) using prospective data, assess the relationship between mortality risk and glycemic control in US adults with type 2 diabetes. Data from the 1988-1994 and 1999-2004 National Health and Nutrition Examination Surveys were used. HbA1c values were used to create dichotomous glycemic control indicators. Binary logistic regression models were used to assess relationships between risk factors, employment status and glycemic control. Multinomial logistic regression analyses were conducted to assess relationships between glycemic control and HRQOL variables. Zero-inflated Poisson regression models were used to assess relationships between missed work days and glycemic control. Cox-proportional hazard models were used to assess effects of glycemic control on mortality risk. Using STATA software, analyses were weighted to account for complex survey design and non-response. Multivariable models adjusted for socio-demographics, body mass index, among other variables. Results revealed that being a farm worker and working over 40 hours/week were risk factors for suboptimal glycemic control. Having greater days of poor mental was associated with suboptimal, borderline, and poor glycemic control. Having greater days of inactivity was associated with poor glycemic control while having greater days of poor physical health was associated with borderline glycemic control. There were no statistically significant relationships between glycemic control, self-reported general health, employment, and missed work. Finally, having an HbA1c value less than 6.5% was protective against mortality. The findings suggest that work-related factors are important in a person’s ability to reach optimal diabetes management levels. Poor glycemic control appears to have significant detrimental effects on HRQOL.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.