29 resultados para Consumption Predicting Model
em Digital Commons at Florida International University
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems – stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.
Resumo:
The purpose of this study is to produce a model to be used by state regulating agencies to assess demand for subacute care. In accomplishing this goal, the study refines the definition of subacute care, demonstrates a method for bed need assessment, and measures the effectiveness of this new level of care. This was the largest study of subacute care to date. Research focused on 19 subacute units in 16 states, each of which provides high-intensity rehabilitative and/or restorative care carried out in a high-tech unit. Each of the facilities was based in a nursing home, but utilized separate staff, equipment, and services. Because these facilities are under local control, it was possible to study regional differences in subacute care demand.^ Using this data, a model for predicting demand for subacute care services was created, building on earlier models submitted by John Whitman for the American Hospital Association and Robin E. MacStravic. The Broderick model uses the "bootstrapping" method and takes advantage of high technology: computers and software, databases in business and government, publicly available databases from providers or commercial vendors, professional organizations, and other information sources. Using newly available sources of information, this new model addresses the problems and needs of health care planners as they approach the challenges of the 21st century. ^
Resumo:
This study examined the association of theoretically guided and empirically identified psychosocial variables on the co-occurrence of risky sexual behavior with alcohol consumption among university students. The study utilized event analysis to determine whether risky sex occurred during the same event in which alcohol was consumed. Relevant conceptualizations included alcohol disinhibition, self-efficacy, and social network theories. Predictor variables included negative condom attitudes, general risk taking, drinking motives, mistrust, social group membership, and gender. Factor analysis was employed to identify dimensions of drinking motives. Measured risky sex behaviors were (a) sex without a condom, (b) sex with people not known very well, (c) sex with injecting drug users (IDUs), (d) sex with people without knowing whether they had a STD, and (e) sex with using drugs. A purposive sample was used and included 222 male and female students recruited from a major urban university. Chi-square analysis was used to determine whether participants were more likely to engage in risky sex behavior in different alcohol use contexts. These contexts were only when drinking, only when not drinking, and when drinking or not. The chi-square findings did not support the hypothesis that university students who use alcohol with sex will engage in riskier sex. These results added to the literature by extending other similar findings to a university student sample. For each of the observed risky sex behaviors, discriminant analysis methodology was used to determine whether the predictor variables would differentiate the drinking contexts, or whether the behavior occurred. Results from discriminant analyses indicated that sex with people not known very well was the only behavior for which there were significant discriminant functions. Gender and enhancement drinking motives were important constructs in the classification model. Limitations of the study and implications for future research, social work practice and policy are discussed. ^
Resumo:
The purpose of this research was to develop a methodology that would evaluate employees' personality traits, demographic characteristics, and workplace parameters to predict safety compliance along with the moderating effect of risk perception. ^ One hundred and twenty five employees of a manufacturing facility were given questionnaires to gather their demographic and perception information. Surveys were also used to measure their personality characteristics, and periodic observations were recorded to document employee's safety compliance. A significant correlation was found between compliance and the worker's perception of management's commitment to safety (r = 0.27, p < 0.01), as well as with gender (r = −0.19, p < 0.05). Females showed a significantly higher average compliance (78%), than males (69%). These findings demonstrated the value of developing a model to predict safety behavior that would assist companies in maintaining a safe work environment, preventing accidents, ensuring compliance, and reducing associated costs. ^
Resumo:
This quantitative study investigated the predictive relationships and interaction between factors such as work-related social behaviors (WRSB), self-determination (SD), person-job congruency (PJC), job performance (JP), job satisfaction (JS), and job retention (JR). A convenience sample of 100 working adults with MR were selected from supported employment agencies. Data were collected using a survey test battery of standardized instruments. The hypotheses were analyzed using three multiple regression analyses to identify significant relationships. Beta weights and hierarchical regression analysis determined the percentage of the predictor variables contribution to the total variance of the criterion variables, JR, JP, and JS. ^ The findings highlight the importance of self-determination skills in predicting job retention, satisfaction, and performance for employees with MR. Consistent with the literature and hypothesized model, there was a predictive relationship between SD, JS and JR. Furthermore, SD and PJC were predictors of JP. SD and JR were predictors of JS. Interestingly, the results indicated no significant relationship between JR and JP, or between JP and JS, or between PJC and JS. This suggests that there is a limited fit between the hypothesized model and the study's findings. However, the theoretical contribution made by this study is that self-determination is a particularly relevant predictor of important work outcomes including JR, JP, and JS. This finding is consistent with Deci's (1992) Self-Determination Theory and Wehmeyer's (1996) argument that SD skills in individuals with disabilities have important consequences for the success in transitioning from school to adult and work life. This study provides job retention strategies that offer rehabilitation and HR professionals a useful structure for understanding and implementing job retention interventions for people with MR. ^ The study concluded that workers with mental retardation who had more self-determination skills were employed longer, more satisfied, and better performers on the job. Also, individuals whose jobs were matched to their interests and abilities (person-job congruency) were better at self-determination skills. ^
Resumo:
Traffic incidents are a major source of traffic congestion on freeways. Freeway traffic diversion using pre-planned alternate routes has been used as a strategy to reduce traffic delays due to major traffic incidents. However, it is not always beneficial to divert traffic when an incident occurs. Route diversion may adversely impact traffic on the alternate routes and may not result in an overall benefit. This dissertation research attempts to apply Artificial Neural Network (ANN) and Support Vector Regression (SVR) techniques to predict the percent of delay reduction from route diversion to help determine whether traffic should be diverted under given conditions. The DYNASMART-P mesoscopic traffic simulation model was applied to generate simulated data that were used to develop the ANN and SVR models. A sample network that comes with the DYNASMART-P package was used as the base simulation network. A combination of different levels of incident duration, capacity lost, percent of drivers diverted, VMS (variable message sign) messaging duration, and network congestion was simulated to represent different incident scenarios. The resulting percent of delay reduction, average speed, and queue length from each scenario were extracted from the simulation output. The ANN and SVR models were then calibrated for percent of delay reduction as a function of all of the simulated input and output variables. The results show that both the calibrated ANN and SVR models, when applied to the same location used to generate the calibration data, were able to predict delay reduction with a relatively high accuracy in terms of mean square error (MSE) and regression correlation. It was also found that the performance of the ANN model was superior to that of the SVR model. Likewise, when the models were applied to a new location, only the ANN model could produce comparatively good delay reduction predictions under high network congestion level.
Resumo:
The present study examined the relations among previously identified risk and protective variables associated with traumatic exposure and evaluated a model of resilience to traumatic events among Latino youth prior to traumatic exposure using structural equation modeling. Model tests were pursued in the context of Full Information Maximum Likelihood (FIML) methods as implemented in Mplus. The model evaluated the role of the following variables: (a) intervening life events; (b) child characteristics; (c) social support from significant others; and (d) children's coping. Data were collected from 181 Latino youth (M age = 9.22, SD = 1.38; 49.0% female) participants. Data analyses revealed that children's perceived available social support and use of coping strategies predicted low state anxiety following exposure to cues of disaster. Life events and preexisting depression symptoms did not significantly predict social support and coping, whereas preexisting anxiety was a significant predictor of perceived social support. This study represents an important initial step towards establishing and empirically evaluating a resilience model. Implications for preparedness interventions and a framework for the etiology of resilient reactions to disaster exposure are discussed.
Resumo:
This dissertation comprises three individual chapters. Chapter Two examines how free riding across neighbors influenced the diffusion of color television sets in rural China. Chapter Three tests for asymmetric information between a firm’s management and other investors concerning its patent output. Chapter Four discusses how knowledge stocks influence a patenting firm’s later diversification. Chapter Two documents the existence of a type of network effects—free riding across neighbors—in the consumption of color television sets in rural China, which reduces the propensity of non-owners to purchase. I construct a model of the timing of the purchase of a durable good in the presence of free riding, and test its key implications using household survey data in rural China. Chapter Three tests for asymmetric information between a firm’s management and other investors about its patent output by examining insider trading patterns and stock price changes in R&D intensive firms. It demonstrates that management has considerable information about its patent output beyond what is known to investors. It also shows that the predictive power of insider trading patterns on patent output comes from purchases rather than sales. Chapter Four discusses two sequential channels through which knowledge stocks may influence a firm’s later diversification. One is that firms with more knowledge are more likely to enter a new industry. The other is that firms’ businesses have a better chance of surviving, conditional on being formed. By examining U.S. public patenting firms in manufacturing sectors for 1984-1996, I find that knowledge stocks predict the likelihood of new industry entry when controlling for firm size. However, this predictive power is weakened when diversification effects are included. On the other hand, a survival study of newly established segments shows that initial knowledge stocks have significant positive effects on segment survival, whereas diversification effects are insignificant.
Resumo:
This study examined Kirkpatrick’s training evaluation model (Kirkpatrick & Kirkpatrick, 2006) by assessing a sales training program conducted at an organization in the hospitality industry. The study assessed the employees’ training outcomes of knowledge and skills, job performance, and the impact of the training upon the organization. By assessing these training outcomes and their relationships, the study demonstrated whether Kirkpatrick’s theories are supported and the lower evaluation levels can be used to predict organizational impact. The population for this study was a group of reservations sales agents from a leading luxury hotel chain’s reservations center. During the study period from January 2005 to May 2007, there were 335 reservations sales agents employed in this Global Reservations Center (GRC). The number of reservations sales agents who had completed a sales training program/intervention during this period and had data available for at least two months pre and post training composed the sample for this study. The number of agents was 69 ( N = 69). Four hypotheses were tested through paired-samples t tests, correlation, and hierarchical regression analytic procedures. Results from the analyses supported the hypotheses in this study. The significant improvement in the call score supported hypothesis one that the reservations sales agents who completed the training improved their knowledge of content and required skills in handling calls (Level 2). Hypothesis two was accepted in part as there was significant improvement in call conversion, but there was no significant improvement of time usage. The significant improvement in the sales per call supported hypothesis three that the reservations agents who completed the training contributed to increased organizational impact (Level 4), i.e., made significantly more sales. Last, findings supported hypothesis four that Level 2 and Level 3 variables can be used for predicting Level 4 organizational impact. The findings supported the theory of Kirkpatrick’s evaluation model that in order to expect organizational results, a positive change in behavior (job performance) and learning must occur. The examinations of Levels 2 and 3 helped to partially explain and predict Level 4 results.
Resumo:
Traffic from major hurricane evacuations is known to cause severe gridlocks on evacuation routes. Better prediction of the expected amount of evacuation traffic is needed to improve the decision-making process for the required evacuation routes and possible deployment of special traffic operations, such as contraflow. The objective of this dissertation is to develop prediction models to predict the number of daily trips and the evacuation distance during a hurricane evacuation. ^ Two data sets from the surveys of the evacuees from Hurricanes Katrina and Ivan were used in the models' development. The data sets included detailed information on the evacuees, including their evacuation days, evacuation distance, distance to the hurricane location, and their associated socioeconomic characteristics, including gender, age, race, household size, rental status, income, and education level. ^ Three prediction models were developed. The evacuation trip and rate models were developed using logistic regression. Together, they were used to predict the number of daily trips generated before hurricane landfall. These daily predictions allowed for more detailed planning over the traditional models, which predicted the total number of trips generated from an entire evacuation. A third model developed attempted to predict the evacuation distance using Geographically Weighted Regression (GWR), which was able to account for the spatial variations found among the different evacuation areas, in terms of impacts from the model predictors. All three models were developed using the survey data set from Hurricane Katrina and then evaluated using the survey data set from Hurricane Ivan. ^ All of the models developed provided logical results. The logistic models showed that larger households with people under age six were more likely to evacuate than smaller households. The GWR-based evacuation distance model showed that the household with children under age six, income, and proximity of household to hurricane path, all had an impact on the evacuation distances. While the models were found to provide logical results, it was recognized that they were calibrated and evaluated with relatively limited survey data. The models can be refined with additional data from future hurricane surveys, including additional variables, such as the time of day of the evacuation. ^
Resumo:
The primary purpose of this study was to investigate agreement among five equations by which clinicians estimate water requirements (EWR) and to determine how well these equations predict total water intake (TWI). The Institute of Medicine has used TWI as a measure of water requirements. A secondary goal of this study was to develop practical equations to predict TWI. These equations could then be considered accurate predictors of an individual’s water requirement. ^ Regressions were performed to determine agreement between the five equations and between the five equations and TWI using NHANES 1999–2004. The criteria for agreement was (1) strong correlation coefficients between all comparisons and (2) regression line that was not significantly different when compared to the line of equality (x=y) i.e., the 95% CI of the slope and intercept must include one and zero, respectively. Correlations were performed to determine association between fat-free mass (FFM) and TWI. Clinically significant variables were selected to build equations for predicting TWI. All analyses were performed with SAS software and were weighted to account for the complex survey design and for oversampling. ^ Results showed that the five EWR equations were strongly correlated but did not agree with each other. Further, the EWR equations were all weakly associated to TWI and lacked agreement with TWI. The strongest agreement between the NRC equation and TWI explained only 8.1% of the variability of TWI. Fat-free mass was positively correlated to TWI. Two models were created to predict TWI. Both models included the variables, race/ethnicity, kcals, age, and height, but one model also included FFM and gender. The other model included BMI and osmolality. Neither model accounted for more than 28% of the variability of TWI. These results provide evidence that estimates of water requirements would vary depending upon which EWR equation was selected by the clinician. None of the existing EWR equations predicted TWI, nor could a prediction equation be created which explained a satisfactory amount of variance in TWI. A good estimate of water requirements may not be predicted by TWI. Future research should focus on using more valid measures to predict water requirements.^
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^