13 resultados para Conceptualizing and Measuring
em Digital Commons at Florida International University
Resumo:
Clusters are aggregations of atoms or molecules, generally intermediate in size between individual atoms and aggregates that are large enough to be called bulk matter. Clusters can also be called nanoparticles, because their size is on the order of nanometers or tens of nanometers. A new field has begun to take shape called nanostructured materials which takes advantage of these atom clusters. The ultra-small size of building blocks leads to dramatically different properties and it is anticipated that such atomically engineered materials will be able to be tailored to perform as no previous material could.^ The idea of ionized cluster beam (ICB) thin film deposition technique was first proposed by Takagi in 1972. It was based upon using a supersonic jet source to produce, ionize and accelerate beams of atomic clusters onto substrates in a vacuum environment. Conditions for formation of cluster beams suitable for thin film deposition have only recently been established following twenty years of effort. Zinc clusters over 1,000 atoms in average size have been synthesized both in our lab and that of Gspann. More recently, other methods of synthesizing clusters and nanoparticles, using different types of cluster sources, have come under development.^ In this work, we studied different aspects of nanoparticle beams. The work includes refinement of a model of the cluster formation mechanism, development of a new real-time, in situ cluster size measurement method, and study of the use of ICB in the fabrication of semiconductor devices.^ The formation process of the vaporized-metal cluster beam was simulated and investigated using classical nucleation theory and one dimensional gas flow equations. Zinc cluster sizes predicted at the nozzle exit are in good quantitative agreement with experimental results in our laboratory.^ A novel in situ real-time mass, energy and velocity measurement apparatus has been designed, built and tested. This small size time-of-flight mass spectrometer is suitable to be used in our cluster deposition systems and does not suffer from problems related to other methods of cluster size measurement like: requirement for specialized ionizing lasers, inductive electrical or electromagnetic coupling, dependency on the assumption of homogeneous nucleation, limits on the size measurement and non real-time capability. Measured ion energies using the electrostatic energy analyzer are in good accordance with values obtained from computer simulation. The velocity (v) is measured by pulsing the cluster beam and measuring the time of delay between the pulse and analyzer output current. The mass of a particle is calculated from m = (2E/v$\sp2).$ The error in the measured value of background gas mass is on the order of 28% of the mass of one N$\sb2$ molecule which is negligible for the measurement of large size clusters. This resolution in cluster size measurement is very acceptable for our purposes.^ Selective area deposition onto conducting patterns overlying insulating substrates was demonstrated using intense, fully-ionized cluster beams. Parameters influencing the selectivity are ion energy, repelling voltage, the ratio of the conductor to insulator dimension, and substrate thickness. ^
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.
Resumo:
It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.
Resumo:
In a post-Cold War, post-9/11 world, the advent of US global supremacy resulted in the installation, perpetuation, and dissemination of an Absolutist Security Agenda (hereinafter, ASA). The US ASA explicitly and aggressively articulates and equates US national security interests with the security of all states in the international system, and replaced the bipolar, Cold War framework that defined international affairs from 1945-1992. Since the collapse of the USSR and the 11 September 2001 terrorist attacks, the US has unilaterally defined, implemented, and managed systemic security policy. The US ASA is indicative of a systemic category of knowledge (security) anchored in variegated conceptual and material components, such as morality, philosophy, and political rubrics. The US ASA is based on a logic that involves the following security components: (1) hyper militarization, (2) intimidation,(3) coercion, (4) criminalization, (5) panoptic surveillance, (6) plenary security measures, and (7) unabashed US interference in the domestic affairs of select states. Such interference has produced destabilizing tensions and conflicts that have, in turn, produced resistance, revolutions, proliferation, cults of personality, and militarization. This is the case because the US ASA rests on the notion that the international system of states is an extension, instrument of US power, rather than a system and/or society of states comprised of functionally sovereign entities. To analyze the US ASA, this study utilizes: (1) official government statements, legal doctrines, treaties, and policies pertaining to US foreign policy; (2) militarization rationales, budgets, and expenditures; and (3) case studies of rogue states. The data used in this study are drawn from information that is publicly available (academic journals, think-tank publications, government publications, and information provided by international organizations). The data supports the contention that global security is effectuated via a discrete set of hegemonic/imperialistic US values and interests, finding empirical expression in legal acts (USA Patriot ACT 2001) and the concept of rogue states. Rogue states, therefore, provide test cases to clarify the breadth, depth, and consequentialness of the US ASA in world affairs vis-à-vis the relationship between US security and global security.
Resumo:
In a post-Cold War, post-9/11 world, the advent of US global supremacy resulted in the installation, perpetuation, and dissemination of an Absolutist Security Agenda (hereinafter, ASA). The US ASA explicitly and aggressively articulates and equates US national security interests with the security of all states in the international system, and replaced the bipolar, Cold War framework that defined international affairs from 1945-1992. Since the collapse of the USSR and the 11 September 2001 terrorist attacks, the US has unilaterally defined, implemented, and managed systemic security policy. The US ASA is indicative of a systemic category of knowledge (security) anchored in variegated conceptual and material components, such as morality, philosophy, and political rubrics. The US ASA is based on a logic that involves the following security components: 1., hyper militarization, 2., intimidation, 3., coercion, 4., criminalization, 5., panoptic surveillance, 6., plenary security measures, and 7., unabashed US interference in the domestic affairs of select states. Such interference has produced destabilizing tensions and conflicts that have, in turn, produced resistance, revolutions, proliferation, cults of personality, and militarization. This is the case because the US ASA rests on the notion that the international system of states is an extension, instrument of US power, rather than a system and/or society of states comprised of functionally sovereign entities. To analyze the US ASA, this study utilizes: 1., official government statements, legal doctrines, treaties, and policies pertaining to US foreign policy; 2., militarization rationales, budgets, and expenditures; and 3., case studies of rogue states. The data used in this study are drawn from information that is publicly available (academic journals, think-tank publications, government publications, and information provided by international organizations). The data supports the contention that global security is effectuated via a discrete set of hegemonic/imperialistic US values and interests, finding empirical expression in legal acts (USA Patriot ACT 2001) and the concept of rogue states. Rogue states, therefore, provide test cases to clarify the breadth, depth, and consequentialness of the US ASA in world affairs vis-a-vis the relationship between US security and global security.
Resumo:
This symposium describes a multi-dimensional strategy to examine fidelity of implementation in an authentic school district context. An existing large-district peer mentoring program provides an example. The presentation will address development of a logic model to articulate a theory of change; collaborative creation of a data set aligned with essential concepts and research questions; identification of independent, dependent, and covariate variables; issues related to use of big data that include conditioning and transformation of data prior to analysis; operationalization of a strategy to capture fidelity of implementation data from all stakeholders; and ways in which fidelity indicators might be used.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Biochar has been heralded a mechanism for carbon sequestration and an ideal amendment for improving soil quality. Melaleuca quinquenervia is an aggressive and wide-spread invasive species in Florida. The purpose of this research was to convert M. quinquenervia biomass into biochar and measure how application at two rates (2% or 5% wt/wt) impacts soil quality, plant growth, and microbial gas flux in a greenhouse experiment using Phaseolus vulgaris L. and local soil. Plant growth was measured using height, biomass weight, specific leaf area, and root-shoot ratio. Soil quality was evaluated according to nutrient content and water holding capacity. Microbial respiration, as carbon dioxide (CO2), was measured using gas chromatography. Biochar addition at 5% significantly reduced available soil nutrients, while 2% biochar application increased almost all nutrients. Plant biomass was highest in the control group, p2 flux decreased significantly in both biochar groups, but reductions were not long term.
Resumo:
Tropical Rainfall Measuring Mission (TRMM) rainfall retrieval algorithms are evaluated in tropical cyclones (TCs). Differences between the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) retrievals are found to be related to the storm region (inner core vs. rainbands) and the convective nature of the precipitation as measured by radar reflectivity and ice scattering signature. In landfalling TCs, the algorithms perform differently depending on whether the rainfall is located over ocean, land, or coastal surfaces. Various statistical techniques are applied to quantify these differences and identify the discrepancies in rainfall detection and intensity. Ground validation is accomplished by comparing the landfalling storms over the Southeast US to the NEXRAD Multisensor Precipitation Estimates (MPE) Stage-IV product. Numerous recommendations are given to algorithm users and developers for applying and interpreting these algorithms in areas of heavy and widespread tropical rainfall such as tropical cyclones.