8 resultados para Conceptual understanding
em Digital Commons at Florida International University
Resumo:
In an attempt to improve students' functional understanding of plagiarism a variety of approaches were tried within the context of a more comprehensive information literacy program. Sessions were taught as a one hour "module" inside a required communications skills class at a small private university. Approaches taken included control sessions (a straightforward PowerPoint presentation of the material), direct instruction sessions (featuring mostly direct lecture but with some seatwork as well), and student-centered sessions (utilizing role playing and group exercises). Students were taught basic content and definitions regarding plagiarism, what circumstances or instances constitute plagiarism, where to go for help in avoiding plagiarism, and what constitutes appropriate paraphrasing and citation. Pre-test and post-test scores determined students' functional understanding primarily by their ability to recognize properly and improperly paraphrased text, content understanding by their combined total score on a multiple choice quiz, and their attitude and conceptual understanding by their ability to recognize circumstances which would constitute plagiarism. While students improved across all methods the study was unable to identify one that performed significantly better than the others. The results supported the need for more education with regard to plagiarism and suggested a need for perhaps more time on task and/or a mixed approach towards conveying the content.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C− or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding of and performance with computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: 1. identifying sources of computer science students’ difficulties with proofs by induction, and 2. developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as “Clickers”, improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
This thesis developed a conceptual framework aimed at enhancing our understanding of contemporary child slavery. A new variety of slavery exists today, the result of forms of forced servitude that existed alongside slavery many centuries ago. This is tantamount to slavery. There is, however, a critical lack of awareness about important aspects of the reality of this new child slavery. The framework and definitions of slavery in usage today, though interesting and sufficient to cover historical situations, are unable to adequately describe the conditions of the child slavery. Using existing literature and research, this thesis conceptualized children's labor in a manner that allows a clearer perception of the exploitation of their labor within and beyond the household. Explanatory factors such as culture, the age of victims, the number of hours worked and the ability or not of the victim to volunteer or withdraw their participation in the specific activities were employed to determine if particular situations should be considered as child slavery, repressive child labor or merely as child work. Important distinctions were made between the use of children's mental and physical energy in defined activities. ^
Resumo:
We developed a conceptual ecological model (CEM) for invasive species to help understand the role invasive exotics have in ecosystem ecology and their impacts on restoration activities. Our model, which can be applied to any invasive species, grew from the eco-regional conceptual models developed for Everglades restoration. These models identify ecological drivers, stressors, effects and attributes; we integrated the unique aspects of exotic species invasions and effects into this conceptual hierarchy. We used the model to help identify important aspects of invasion in the development of an invasive exotic plant ecological indicator, which is described a companion paper in this special issue journal. A key aspect of the CEM is that it is a general ecological model that can be tailored to specific cases and species, as the details of any invasion are unique to that invasive species. Our model encompasses the temporal and spatial changes that characterize invasion, identifying the general conditions that allow a species to become invasive in a de novo environment; it then enumerates the possible effects exotic species may have collectively and individually at varying scales and for different ecosystem properties, once a species becomes invasive. The model provides suites of characteristics and processes, as well as hypothesized causal relationships to consider when thinking about the effects or potential effects of an invasive exotic and how restoration efforts will affect these characteristics and processes. In order to illustrate how to use the model as a blueprint for applying a similar approach to other invasive species and ecosystems, we give two examples of using this conceptual model to evaluate the status of two south Florida invasive exotic plant species (melaleuca and Old World climbing fern) and consider potential impacts of these invasive species on restoration.