4 resultados para Concepts of Physics

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last twenty years have been a period of growth in education development, development ethics, and female leadership studies. Literature indicates meaningful connections between these disciplines and points towards reassessment of obstacles to systemic change. A new term enpowerment is coined to define a proposed framework for ethical development practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this mixed methods study was to understand physics Learning Assistants' (LAs) views on reflective teaching, expertise in teaching, and LA program teaching experience and to determine if views predicted level of reflection evident in writing. Interviews were conducted in Phase One, Q methodology was used in Phase Two, and level of reflection in participants' writing was assessed using a rubric based on Hatton and Smith's (1995) "Criteria for the Recognition of Evidence for Different Types of Reflective Writing" in Phase Three. Interview analysis revealed varying perspectives on content knowledge, pedagogical knowledge, and experience in relation to expertise in teaching. Participants revealed that they engaged in reflection on their teaching, believed reflection helps teachers improve, and found peer reflection beneficial. Participants believed teaching experience in the LA program provided preparation for teaching, but that more preparation was needed to teach. Three typologies emerged in Phase Two. Type One LAs found participation in the LA program rewarding and believed expertise in teaching does not require expertise in content or pedagogy, but it develops over time from reflection. Type Two LAs valued reflection, but not writing reflections, felt the LA program teaching experience helped them decide on non-teaching careers and helped them confront gaps in their physics knowledge. Type Three LAs valued reflection, believed expertise in content and pedagogy are necessary for expert teaching, and felt LA program teaching experience increased their likelihood of becoming teachers, but did not prepare them for teaching. Writing assignments submitted in Phase Three were categorized as 19% descriptive writing, 60% descriptive reflections, and 21% dialogic reflections. No assignments were categorized as critical reflection. Using ordinal logistic regression, typologies that emerged in Phase Two were not found to be predictors for the level of reflection evident in the writing assignments. In conclusion, viewpoints of physics LAs were revealed, typologies among them were discovered, and their writing gave evidence of their ability to reflect on teaching. These findings may benefit faculty and staff in the LA program by helping them better understand the views of physics LAs and how to assess their various forms of reflection.