11 resultados para Computer vision - Mathematics
em Digital Commons at Florida International University
Resumo:
Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. ^ Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. ^ As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. ^ In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects. ^
Resumo:
This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.
Resumo:
This study examined the effects of computer assisted instruction (CAI) 1 hour per week for 18 weeks on changes in computational scores and attitudes of developmental mathematics students at schools with predominantly Black enrollment. Comparisons were made between students using CAI with differing software--PLATO, CSR or both together--and students using traditional instruction (TI) only.^ This study was conducted in the Dade County Public School System from February through June 1991, at two senior high schools. The dependent variables, the State Student Assessment Test (SSAT), and the School Subjects Attitude Scales (SSAS), measured students' computational scores and attitudes toward mathematics in 3 categories: interest, usefulness, and difficulty, respectively.^ Univariate analyses of variance were performed on the least squares mean differences from pretest to posttest for testing main effects and interactions. A t-test measured significant main effects and interactions. Results were interpreted at the.01 level of significance.^ Null hypotheses 1, 2, and 3 compared versions of CAI with the control group, for changes in mathematical computation scores measured with the SSAT. It could not be concluded that changes in standardized mathematics test scores of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were significantly higher than changes in test scores for students receiving TI only.^ Null hypotheses 4, 5, and 6 tested the effects of CAI for attitudes toward mathematics for experimental groups against control groups measured with the SSAS. Changes in attitudes toward mathematics of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were not significantly higher than attitude changes for students receiving TI only.^ Teacher effect on students' computational scores was a more influential variable than CAI. No interaction was found between gender and learning method on standardized mathematics test scores (null hypothesis 7). ^
Resumo:
Many students are entering colleges and universities in the United States underprepared in mathematics. National statistics indicate that only approximately one-third of students in developmental mathematics courses pass. When underprepared students repeatedly enroll in courses that do not count toward their degree, it costs them money and delays graduation. This study investigated a possible solution to this problem: Whether using a particular computer assisted learning strategy combined with using mastery learning techniques improved the overall performance of students in a developmental mathematics course. Participants received one of three teaching strategies: (a) group A was taught using traditional instruction with mastery learning supplemented with computer assisted instruction, (b) group B was taught using traditional instruction supplemented with computer assisted instruction in the absence of mastery learning and, (c) group C was taught using traditional instruction without mastery learning or computer assisted instruction. Participants were students in MAT1033, a developmental mathematics course at a large public 4-year college. An analysis of covariance using participants' pretest scores as the covariate tested the null hypothesis that there was no significant difference in the adjusted mean final examination scores among the three groups. Group A participants had significantly higher adjusted mean posttest score than did group C participants. A chi-square test tested the null hypothesis that there were no significant differences in the proportions of students who passed MAT1033 among the treatment groups. It was found that there was a significant difference in the proportion of students who passed among all three groups, with those in group A having the highest pass rate and those in group C the lowest. A discriminant factor analysis revealed that time on task correctly predicted the passing status of 89% of the participants. ^ It was concluded that the most efficacious strategy for teaching developmental mathematics was through the use of mastery learning supplemented by computer-assisted instruction. In addition, it was noted that time on task was a strong predictor of academic success over and above the predictive ability of a measure of previous knowledge of mathematics.^
Resumo:
This study compares the effects of cooperative delivery (CD) and individual delivery (ID) of integrated learning system (ILS) instruction in mathematics on achievement, attitudes and behaviors in adult (16-21 yrs.) high school students (grades 9-13). The study was conducted in an urban adult high school in Miami-Dade County Public Schools using a pre-test/post-test design. Achievement was measured using the Test of Adult Basic Education (TABE) by CTB MC-Graw-Hill and Compass Learning. An attitudinal survey measured attitudes towards mathematics, the computer-related lessons, and attitudes toward group activities. Behavior was assessed using computer lab observations. ^ Two-way analyses of variance (ANOVA) were conducted on achievement (TABE and Compass) by group and time (pre and post). A one-way ANOVA was conducted on the overall attitude by group on the five components (i.e., content mathematics, delivery/computers, cooperative, partners, and self efficacy) and a one-way ANOVA was conducted on the on-task behavior by group. ^ The results of the study revealed that CD and ID students working on mathematics activities delivered by the ILS performed similarly on achievement tests of the TABE. The CD-ILS students had significantly better overall mathematics attitudes than the ID-ILS students and the ID-ILS group was on-task significantly more than the CD-ILS group. This study concludes that regularity and period of time over which the ILS is used may prove to be important variables although there were insufficient data to fully investigate the impact of models of use. Additionally, a minimum amount of time-on-system is necessary before gains can become apparent in innumeracy and increasing exposure to the system may have beneficial effects on learning. ^
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
Proofs by induction are central to many computer science areas such as data structures, theory of computation, programming languages, program efficiency-time complexity, and program correctness. Proofs by induction can also improve students’ understanding and performance of computer science concepts such as programming languages, algorithm design, and recursion, as well as serve as a medium for teaching them. Even though students are exposed to proofs by induction in many courses of their curricula, they still have difficulties understanding and performing them. This impacts the whole course of their studies, since proofs by induction are omnipresent in computer science. Specifically, students do not gain conceptual understanding of induction early in the curriculum and as a result, they have difficulties applying it to more advanced areas later on in their studies. The goal of my dissertation is twofold: (1) identifying sources of computer science students’ difficulties with proofs by induction, and (2) developing a new approach to teaching proofs by induction by way of an interactive and multimodal electronic book (e-book). For the first goal, I undertook a study to identify possible sources of computer science students’ difficulties with proofs by induction. Its results suggest that there is a close correlation between students’ understanding of inductive definitions and their understanding and performance of proofs by induction. For designing and developing my e-book, I took into consideration the results of my study, as well as the drawbacks of the current methodologies of teaching proofs by induction for computer science. I designed my e-book to be used as a standalone and complete educational environment. I also conducted a study on the effectiveness of my e-book in the classroom. The results of my study suggest that, unlike the current methodologies of teaching proofs by induction for computer science, my e-book helped students overcome many of their difficulties and gain conceptual understanding of proofs induction.
Resumo:
The purpose of this study was to determine the effects of a computer-based Integrated Learning Systems (ILS) model used with adult high school students engaging mathematics activities. This study examined achievement, attitudinal and behavior differences between students completing ILS activities in a traditional, individualized format compared to cooperative learning groups.
Resumo:
This study examined standards-based mathematics reform initiatives to determine if they would improve student achievement on the part of low-performing students. New curricula, the Carnegie Learning Cognitive Tutor®, were provided for algebra and geometry students. The new instructional strategy relied on both the teacher-led instruction and the use of computers to differentiate instruction for individual students. Mathematics teachers received ongoing professional development to help them implement the new curricula. In addition, teachers were provided with ongoing support to assist them with the transformation of the learning environments for students using standards-based practices. This quasi-experimental (nonrandomized) study involved teachers in two matched urban high schools. Analyses (ANCOVAs) revealed that the experimental group with an appropriately implemented program had significantly higher learning gains than the comparison group as determined by the students' 2007 mathematics Developmental Scale Score (DSS). In addition, the experimental group's adjusted mean for the second interim mathematics assessment was significantly higher than the comparison group's mean. The findings support the idea that if the traditional curriculum is replaced with standards-based curriculum, and the curriculum is implemented as intended, low-performing students may make significant learning gains. With respect to the teaching practices as observed with the Classroom Observation Protocol (COP), t-tests were conducted on four constructs. The results for both the algebra and geometry teachers on the constructs were not significant. The COP indicated that teachers in both the experimental and comparison groups used traditional instruction strategies in their classrooms. The analyses of covariance (ANCOVA) on the use of technology revealed no significant main effects for computer use.
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
The impact of standards-based practices in mathematics on the achievement of low-performing students
Resumo:
This study examined standards-based mathematics reform initiatives to determine if they would improve student achievement on the part of low-performing students. New curricula, the Carnegie Learning Cognitive Tutor®, were provided for algebra and geometry students. The new instructional strategy relied on both the teacher-led instruction and the use of computers to differentiate instruction for individual students. Mathematics teachers received ongoing professional development to help them implement the new curricula. In addition, teachers were provided with ongoing support to assist them with the transformation of the learning environments for students using standards-based practices. This quasi-experimental (nonrandomized) study involved teachers in two matched urban high schools. Analyses (ANCOVAs) revealed that the experimental group with an appropriately implemented program had significantly higher learning gains than the comparison group as determined by the students' 2007 mathematics Developmental Scale Score (DSS). In addition, the experimental group's adjusted mean for the second interim mathematics assessment was significantly higher than the comparison group's mean. The findings support the idea that if the traditional curriculum is replaced with standards-based curriculum, and the curriculum is implemented as intended, low-performing students may make significant learning gains. With respect to the teaching practices as observed with the Classroom Observation Protocol (COP), t-tests were conducted on four constructs. The results for both the algebra and geometry teachers on the constructs were not significant. The COP indicated that teachers in both the experimental and comparison groups used traditional instruction strategies in their classrooms. The analyses of covariance (ANCOVA) on the use of technology revealed no significant main effects for computer use.