28 resultados para Computer and network security
em Digital Commons at Florida International University
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
This dissertation examined how United States illicit drug control policy, often commonly referred to as the "war on drugs," contributes to the reproduction of gendered and racialized social relations. Specifically, it analyzed the identity producing practices of United States illicit drug control policy as it relates to the construction of U.S. identities. ^ Drawing on the theoretical contributions of feminist postpositivists, three cases of illicit drug policy practice were discussed. In the first case, discourse analysis was employed to examine recent debates (1986-2005) in U.S. Congressional Hearings about the proper understanding of the illicit drug "threat." The analysis showed how competing policy positions are tied to differing understandings of proper masculinity and the role of policymakers as protectors of the national interest. Utilizing critical visual methodologies, the second case examined a public service media campaign circulated by the Office of National Drug Control Policy that tied the "war on drugs" with another security concern in the U.S., the "war on terror." This case demonstrated how the media campaign uses messages about race, masculinity, and femininity to produce privileged notions of state identity and proper citizenship. The third case examined the gendered politics of drug interdiction at the U.S. border. Using qualitative research methodologies including semi-structured interviews and participant observation, it examined how gender is produced through drug interdiction at border sites like Miami International Airport. By paying attention to the discourse that circulates about women drug couriers, it showed how gender is normalized in a national security setting. ^ What this dissertation found is that illicit drug control policy takes the form it does because of the politics of gender and racial identity and that, as a result, illicit drug policy is implicated in the reproduction of gender and racial inequities. It concluded that a more socially conscious and successful illicit drug policy requires an awareness of the gendered and racialized assumptions that inform and shape policy practices.^
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
In a post-Cold War, post-9/11 world, the advent of US global supremacy resulted in the installation, perpetuation, and dissemination of an Absolutist Security Agenda (hereinafter, ASA). The US ASA explicitly and aggressively articulates and equates US national security interests with the security of all states in the international system, and replaced the bipolar, Cold War framework that defined international affairs from 1945-1992. Since the collapse of the USSR and the 11 September 2001 terrorist attacks, the US has unilaterally defined, implemented, and managed systemic security policy. The US ASA is indicative of a systemic category of knowledge (security) anchored in variegated conceptual and material components, such as morality, philosophy, and political rubrics. The US ASA is based on a logic that involves the following security components: (1) hyper militarization, (2) intimidation,(3) coercion, (4) criminalization, (5) panoptic surveillance, (6) plenary security measures, and (7) unabashed US interference in the domestic affairs of select states. Such interference has produced destabilizing tensions and conflicts that have, in turn, produced resistance, revolutions, proliferation, cults of personality, and militarization. This is the case because the US ASA rests on the notion that the international system of states is an extension, instrument of US power, rather than a system and/or society of states comprised of functionally sovereign entities. To analyze the US ASA, this study utilizes: (1) official government statements, legal doctrines, treaties, and policies pertaining to US foreign policy; (2) militarization rationales, budgets, and expenditures; and (3) case studies of rogue states. The data used in this study are drawn from information that is publicly available (academic journals, think-tank publications, government publications, and information provided by international organizations). The data supports the contention that global security is effectuated via a discrete set of hegemonic/imperialistic US values and interests, finding empirical expression in legal acts (USA Patriot ACT 2001) and the concept of rogue states. Rogue states, therefore, provide test cases to clarify the breadth, depth, and consequentialness of the US ASA in world affairs vis-à-vis the relationship between US security and global security.
Resumo:
In a post-Cold War, post-9/11 world, the advent of US global supremacy resulted in the installation, perpetuation, and dissemination of an Absolutist Security Agenda (hereinafter, ASA). The US ASA explicitly and aggressively articulates and equates US national security interests with the security of all states in the international system, and replaced the bipolar, Cold War framework that defined international affairs from 1945-1992. Since the collapse of the USSR and the 11 September 2001 terrorist attacks, the US has unilaterally defined, implemented, and managed systemic security policy. The US ASA is indicative of a systemic category of knowledge (security) anchored in variegated conceptual and material components, such as morality, philosophy, and political rubrics. The US ASA is based on a logic that involves the following security components: 1., hyper militarization, 2., intimidation, 3., coercion, 4., criminalization, 5., panoptic surveillance, 6., plenary security measures, and 7., unabashed US interference in the domestic affairs of select states. Such interference has produced destabilizing tensions and conflicts that have, in turn, produced resistance, revolutions, proliferation, cults of personality, and militarization. This is the case because the US ASA rests on the notion that the international system of states is an extension, instrument of US power, rather than a system and/or society of states comprised of functionally sovereign entities. To analyze the US ASA, this study utilizes: 1., official government statements, legal doctrines, treaties, and policies pertaining to US foreign policy; 2., militarization rationales, budgets, and expenditures; and 3., case studies of rogue states. The data used in this study are drawn from information that is publicly available (academic journals, think-tank publications, government publications, and information provided by international organizations). The data supports the contention that global security is effectuated via a discrete set of hegemonic/imperialistic US values and interests, finding empirical expression in legal acts (USA Patriot ACT 2001) and the concept of rogue states. Rogue states, therefore, provide test cases to clarify the breadth, depth, and consequentialness of the US ASA in world affairs vis-a-vis the relationship between US security and global security.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
Next generation networks are characterized by ever increasing complexity, intelligence, heterogeneous technologies and increasing user expectations. Telecommunication networks in particular have become truly global, consisting of a variety of national and regional networks, both wired and wireless. Consequently, the management of telecommunication networks is becoming increasingly complex. In addition, network security and reliability requirements require additional overheads which increase the size of the data records. This in turn causes acute network traffic congestions. There is no single network management methodology to control the various requirements of today's networks, and provides a good level of Quality of Service (QoS), and network security. Therefore, an integrated approach is needed in which a combination of methodologies can provide solutions and answers to network events (which cause severe congestions and compromise the quality of service and security). The proposed solution focused on a systematic approach to design a network management system based upon the recent advances in the mobile agent technologies. This solution has provided a new traffic management system for telecommunication networks that is capable of (1) reducing the network traffic load (thus reducing traffic congestion), (2) overcoming existing network latency, (3) adapting dynamically to the traffic load of the system, (4) operating in heterogeneous environments with improved security, and (5) having robust and fault tolerance behavior. This solution has solved several key challenges in the development of network management for telecommunication networks using mobile agents. We have designed several types of agents, whose interactions will allow performing some complex management actions, and integrating them. Our solution is decentralized to eliminate excessive bandwidth usage and at the same time has extended the capabilities of the Simple Network Management Protocol (SNMP). Our solution is fully compatible with the existing standards.
Resumo:
This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^
Resumo:
Mediation techniques provide interoperability and support integrated query processing among heterogeneous databases. While such techniques help data sharing among different sources, they increase the risk for data security, such as violating access control rules. Successful protection of information by an effective access control mechanism is a basic requirement for interoperation among heterogeneous data sources. ^ This dissertation first identified the challenges in the mediation system in order to achieve both interoperability and security in the interconnected and collaborative computing environment, which includes: (1) context-awareness, (2) semantic heterogeneity, and (3) multiple security policy specification. Currently few existing approaches address all three security challenges in mediation system. This dissertation provides a modeling and architectural solution to the problem of mediation security that addresses the aforementioned security challenges. A context-aware flexible authorization framework was developed in the dissertation to deal with security challenges faced by mediation system. The authorization framework consists of two major tasks, specifying security policies and enforcing security policies. Firstly, the security policy specification provides a generic and extensible method to model the security policies with respect to the challenges posed by the mediation system. The security policies in this study are specified by 5-tuples followed by a series of authorization constraints, which are identified based on the relationship of the different security components in the mediation system. Two essential features of mediation systems, i. e., relationship among authorization components and interoperability among heterogeneous data sources, are the focus of this investigation. Secondly, this dissertation supports effective access control on mediation systems while providing uniform access for heterogeneous data sources. The dynamic security constraints are handled in the authorization phase instead of the authentication phase, thus the maintenance cost of security specification can be reduced compared with related solutions. ^
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ the whole brain network to perform the ADDT language task; on the contrary, controls seemed to efficiently use smaller segregated network components to achieve the same task. To explain the causes of the decreased efficiency, graph theoretical analysis was carried out. The analysis revealed no substantial global network feature differences between the patient and control groups. It also showed that for both subject groups the language network exhibited small-world characteristics; however, the patient’s extent of activation network showed a tendency towards more random networks. It was also shown that the intensity of activation network displayed ipsilateral hub reorganization on the local level. The left hemispheric hubs displayed greater centrality values for patients, whereas the right hemispheric hubs displayed greater centrality values for controls. This hub hemispheric disparity was not correlated with a right atypical language laterality found in six patients. Finally it was shown that a multi-level unsupervised clustering scheme based on self-organizing maps, a type of artificial neural network, and k-means was able to fairly and blindly separate the subjects into their respective patient or control groups. The clustering was initiated using the local nodal centrality measurements only. Compared to the extent of activation network, the intensity of activation network clustering demonstrated better precision. This outcome supports the assertion that the local centrality differences presented by the intensity of activation network can be associated with focal epilepsy.
Resumo:
Small Arms and Light Weapons (SALW) proliferation was undertaken by the Non-Governmental Organizations (NGOs) as the next important issue in international relations after the success of the International Campaign to Ban Landmines (ICBL). This dissertation focuses on the reasons why the issue of SALW resulted in an Action Program rather than an international convention. Thus, this result was considered as unsuccessful by the advocates of regulating the illicit trade in SALW. The study provides a social movement theoretical approach, using framing, political opportunity and network analysis to explain why the advocates of regulating the illicit trade in SALW did no succeed in their goals. The UN is taken as the arena in which NGOs, States and International Governmental Organizations (IGOs) discussed the illicit trade in SALW. ^ The findings of the study indicate that the political opportunity for the issue of SALW was not ideal. The network of NGOs, States and IGOs was not strong. The NGOs advocating regulation of SALW were divided over the approach of the issue and were part of different coalitions with differing objectives. Despite initial widespread interest among States, only a couple of States were fully committed to the issue till the end. The regional IGOs approached the issue based on their regional priorities and were less interested in an international covenant. The advocates of regulating illicit trade in SALW attempted to frame SALW as a humanitarian issue rather than as a security issue. Thus they were not able to use frame alignment to convince states to treat SALW as a humanitarian issue. In conclusion it can be said that all three items, framing, political opportunity and the network, play a role in the lack of success of advocates for regulating the illicit trade in SALW. ^