2 resultados para Competitive Behavior
em Digital Commons at Florida International University
Resumo:
The Maya of the Yucatan region have a long history of keeping the native stingless bees (subfamily Meliponinae). However, market forces in the last few decades have driven the Maya to favor the use of invasive Africanized honey bees (Apis mellifera scutellata) for producing large quantities of high quality honey that has an international market. Furthermore, the native bees traditionally used by the Maya are now disappearing, along with the practice of keeping them. ^ An interdisciplinary approach was taken in order to determine the social factors behind the decrease in stingless beekeeping and the ecological driving forces behind their disappearance from the wild. Social research methods included participant observation with stingless beekeepers, Apis beekeepers, and marketing intermediaries. Ecological research methods included point observations of commonly known melliferous and polliniferous plants along transects in three communities with different degrees of human induced ecosystem disturbance. ^ The stingless bee species most important to the Maya, Melipona beecheii, has become extremely rare, and this has caused a breakdown of stingless beekeeping tradition, compounded with the pressure of the market economy, which fuels Apis beekeeping and has lessened the influence of traditional practices. The community with the heaviest amount of human induced ecosystem disturbance also had the highest degree of dominance of Apis mellifera, while the area with the most intact ecosystem had the highest diversity of stingless bees, though Apis mellifera was still the dominant species. Aggressive competitive behavior involving physical attacks by Apis mellifera against stingless bees was observed on several occasions, and this is a new observation previously unreported by science. ^
Resumo:
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.