8 resultados para Climate Change: Learning from the past climate

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of military analogy is rampant and considered an acceptable part of business vernacular. However, analogies only illustrate, and bad analogies make bad strategy. There are important lessons to be learned from military strategy, though. This article identifies "the ten principles of strategy" that corporate strategists could utilize in testing their strategic theories, concepts, and plans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New labor movements are currently emerging across the Global South. This is happening in countries as disparate as China, Egypt, and Iran. New developments are taking place within labor movements in places such as Colombia, Indonesia, Iraq, Mexico, Pakistan and Venezuela. Activists and leaders in these labor movements are seeking information from workers and unions around the world. However, many labor activists today know little or nothing about the last period of intense efforts to build international labor solidarity, the years 1978-2007. One of the key labor movements of this period, and which continues today, is the KMU Labor Center of the Philippines. It is this author’s contention that there is a lot unknown about the KMU that would help advance global labor solidarity today. This paper focuses specifically on the KMU’s development, and shares five things that have emerged from this author’s study of the KMU: a new type of trade unionism, new union organizations, an emphasis on rank and file education, building relations with sectoral organizations, and the need to build international labor solidarity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing threat of global climate change is predicted to have immense influences on ecosystems worldwide, but could be particularly severe to vulnerable wetland environments such as the Everglades. This work investigates the impact global climate change could have on the hydrologic and vegetative makeup of Everglades National Park (ENP) under forecasted emissions scenarios. Using a simple stochastic model of aboveground water levels driven by a fluctuating rainfall input, we link across ENP a location's mean depth and percent time of inundation to the predicted changes in precipitation from climate change. Changes in the hydrologic makeup of ENP are then related to changes in vegetation community composition through the use of relationships developed between two publically available datasets. Results show that under increasing emissions scenarios mean annual precipitation was forecasted to decrease across ENP leading to a marked hydrologic change across the region. Namely, areas were predicted to be shallower in average depth of standing water and inundated less of the time. These hydrologic changes in turn lead to a shift in ENP's vegetative makeup, with xeric vegetative communities becoming more numerous and hydric vegetative communities becoming scarcer. Noticeably, the most widespread of vegetative communities, sawgrass, decreases in abundance under increasing emissions scenarios. These results are an important indicator of the effects climate change may have on the Everglades region and raise important management implications for those seeking to restore this area to its historical hydrologic and vegetative condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem on which this study focused was individuals' reduced capacity to respond to change and to engage in innovative learning when their reflective learning skills are limited. In this study, the preceding problem was addressed by two primary questions: To what degree can mastery of a strategy for reflective learning be facilitated as a part of an academic curriculum for professional practitioners? What impact will mastery of this strategy have on the learning style and adaptive flexibility of adult learners? The focus of the study was a direct application of human resource development technology in the professional preparation of teachers. The background of the problem in light of changing global paradigms and educational action orientations was outlined and a review of the literature was provided. Roots of thought for two key concepts (i.e., learning to learn from experience and meaningful reflection in learning) were traced. Reflective perspectives from the work of eight researchers were compared. A meta-model of learning from experience drawn from the literature served as a conceptual framework for the study. A strategy for reflective learning developed from this meta-model was taught to 109 teachers-in-training at Florida International University in Miami, Florida. Kolb's Adaptive Style Inventory and Learning Style Inventory were administered to the treatment group and to two control groups taught by the same professor. Three research questions and fourteen hypotheses guided data analysis. Qualitative review of 1565 personal documents generated by the treatment group indicated that 77 students demonstrated "double-loop" learning, going beyond previously established limits to perception, understanding, or action. The mean score for depth of reflection indicated "single-loop" learning with "reflection-in-action" present. The change in the mean score for depth of reflection from the beginning to end of the study was statistically significant (p $<$.05). On quantitative measures of adaptive flexibility and learning style, with two exceptions, there were no significant differences noted between treatment and control groups on pre-test to post-test differences and on post-test mean scores adjusted for pre-test responses and demographic variables. Conclusions were drawn regarding treatment, instrumentation, and application of the strategy and the meta-model. Implications of the strategy and the meta-model for research, for education, for human resource development, for professional practice, and for personal growth were suggested. Qualitative training materials and Kolb's instruments were provided in the appendices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accumulation and preservation of peat soils in Everglades freshwater marshes and mangrove swamps is an essential process in the ecological functioning of these ecosystems. Human intervention and climate change have modified nutrient dynamics and hydroperiod in the Everglades and peat loss due to such anthropogenic activities is evident. However, not much is known on the molecular level regarding the biogeochemical characteristics, which allow peat to be preserved in the Everglades. Lipid biomarkers trapped within or bound to humic-type structures can provide important geochemical information regarding the origin and microbial transformation of OM in peat. Four lipid fractions obtained from a Cladium peat, namely the freely extractable fraction and those associated with humin, humic acid, and fulvic acid fractions, showed clear differences in their molecular distribution suggesting different OM sources and structural and diagenetic states of the source material. Both, higher plant derived and microbial lipids were found in association with these humic-type substances. Most biomarker distributions suggest an increment in the microbial/terrestrial lipid ratio from the free to humin to humic to fulvic fractions. Microbial reworking of lipids, and the incorporation of microbial biomarkers into the humic-type fractions was evident, as well as the preservation of diagenetic byproducts. The lipid distribution associated with the fulvic acids suggests a high degree of microbial reworking for this fraction. Evidence for this 3D structure was obtained through the presence of the relatively high abundance of α,ω-dicarboxylic acids and phenolic and benzenecarboxylic compounds. The increment in structural complexity of the phenolic and benzencarboxylic compounds in combination with the reduction in the carbon chain length of the dicarboxylic acids from the free to fulvic fraction suggests the latter to be structurally the most stable, compacted and diagenetically altered substrate. This analytical approach can now be applied to peat samples from other areas within the Everglades ecosystem, affected differently by human intervention with the aim to assess changes in organic matter preservation.