15 resultados para Chromatography
em Digital Commons at Florida International University
Resumo:
Reversed-phase high performance liquid chromatographic methods for the analysis of Haloacetic acids have been developed and compared to conventional direct detection methods. Haloacetic acids commonly found in drinking water, including monochloro-, dichloro-, bromo-, iodo- and trichloroacetic acids- have been studied. The ion pairing agent benzyltributylammonium ion was studied in detail using indirect UV and indirect fluorescence detection. Five different competing ions were evaluated to decrease analysis times and lower the detection limit by this new method. The direct detection method utilized an ammonium sulfate buffer and UV detection yielding a detection limit of 100 ppb. The indirect method developed has the advantage of being able to simultaneously analyze UV and non-UV absorbing ions and molecules but requires long equilibration times and demonstrated lower sensitivity than the direct method. ^
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. ^ The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can't be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications.^ Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. ^ Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.^
Resumo:
Background Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods (offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose in environmental samples. Results An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water, drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (<20%) was observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with molecular formula C12H20Cl2O8. Conclusions Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental samples. Sucralose was frequently detected (>80%) indicating that the conventional treatment process employed in the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer of anthropogenic wastewater intrusion into the environment.
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.
Resumo:
The goal of this project was to develop a rapid separation and detection method for analyzing organic compounds in smokeless powders and then test its applicability on gunshot residue (GSR) samples. In this project, a total of 20 common smokeless powder additives and their decomposition products were separated by ultra performance liquid chromatography (UPLC) and confirmed by tandem mass spectrometry (MS/MS) using multiple reaction monitoring mode (MRM). Some of the targeted compounds included diphenylamines, centralites, nitrotoluenes, nitroglycerin, and various phthalates. The compounds were ionized in the MS source using simultaneous positive and negative electrospray ionization (ESI) with negative atmospheric pressure chemical ionization (APCI) in order to detect all compounds in a single analysis. The developed UPLC/MS/MS method was applied to commercially available smokeless powders and gunshot residue samples recovered from the hands of shooters, spent cartridges, and smokeless powder retrieved from unfired cartridges. Distinct compositions were identified for smokeless powders from different manufacturers and from separate manufacturing lots. The procedure also produced specific chemical profiles when tested on gunshot residues from different manufacturers. Overall, this thesis represents the development of a rapid and reproducible procedure capable of simultaneously detecting the widest possible range of components present in organic gunshot residue.^
Resumo:
The general method for determining organomercurials in environmental and biological samples is gas chromatography with electron capture detection (GC-ECD). However, tedious sample work up protocols and poor chromatographic response show the need for the development of new methods. Here, Atomic Fluorescence-based methods are described, free from these deficiencies. The organomercurials in soil, sediment and tissue samples are first released from the matrices with acidic KBr and cupric ions and extracted into dichloromethane. The initial extracts are subjected to thiosulfate clean up and the organomercury species are isolated as their chloride derivatives by cupric chloride and subsequent extraction into a small volume of dichloromethane. In water samples the organomercurials are pre-concentrated using a sulfhydryl cotton fiber adsorbent, followed by elution with acidic KBr and CuSO 4 and extraction into dichloromethane. Analysis of the organomercurials is accomplished by capillary column chromatography with atomic fluorescence detection.
Resumo:
The present study measured a chemotherapy drug, etoposide, in pig cerebrospinal fluid after intraventricular administrations were made directly into the fourth ventricle of the brain; cytotoxic concentrations for a twenty-four hour period after infusions. The analytical method developed validates the potential treatment of malignant brain tumors. The increase in serum carotenoid concentration in 30 healthy individuals was measured after supplementation with lutein. HPLC analysis of serum levels of carotenoids showed an increase in the concentration of lutein and a constant concentration of other major serum carotenoids. An initial attempt to measure the enthalpy of aggregation of xanthophylls was conducted by using ultraviolet-visible spectroscopy. The enthalpy of lutein aggregation and AH range of zeaxanthin disordering of aggregation are reported. Monomethyl ether of lutein did not aggregate in any of the aqueous solutions.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.
Resumo:
A comprehensive method for the analysis of 11 target pharmaceuticals representing multiple therapeutic classes was developed for biological tissues (fish) and water. Water samples were extracted using solid phase extraction (SPE), while fish tissue homogenates were extracted using accelerated solvent extraction (ASE) followed by mixed-mode cation exchange SPE cleanup and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 11 target pharmaceuticals analyzed, trimethoprim, caffeine, sulfamethoxazole, diphenhydramine, diltiazem, carbamazepine, erythromycin and fluoxetine were consistently detected in reclaimed water. On the other hand, caffeine, diphenhydramine and carbamazepine were consistently detected in fish and surface water samples. In order to understand the uptake and depuration of pharmaceuticals as well as bioconcentration factors (BCFs) under the worst-case conditions, mosquito fish were exposed to reclaimed water under static-renewal for 7 days, followed by a 14-day depuration phase in clean water. Characterization of the exposure media revealed the presence of 26 pharmaceuticals while 5 pharmaceuticals including caffeine, diphenhydramine, diltiazem, carbamazepine, and ibuprofen were present in the organisms as early as 5 h from the start of the exposure. Liquid chromatography ultra-high resolution Orbitrap mass spectrometry was explored as a tool to identify and quantify phase II pharmaceutical metabolites in reclaimed water. The resulting data confirmed the presence of acetyl-sulfamethoxazole and sulfamethoxazole glucuronide in reclaimed water. To my knowledge, this is the first known report of sulfamethoxazole glucuronide surviving intact through wastewater treatment plants and occurring in environmental water samples. Finally, five bioaccumulative pharmaceuticals including caffeine, carbamazepine, diltiazem, diphenhydramine and ibuprofen detected in reclaimed water were investigated regarding the acute and chronic risks to aquatic organisms. The results indicated a low potential risk of carbamazepine even under the worst case exposure scenario. Given the dilution factors that affect environmental releases, the risk of exposure to carbamazepine will be even more reduced.
Resumo:
The drugs studied in this work have been reportedly used to commit drug-facilitated sexual assault (DFSA), commonly known as "date rape". Detection of the drugs was performed using high-performance liquid chromatography with ultraviolet detection (HPLC/UV) and identified with high performance-liquid chromatography mass spectrometry (HPLC/MS) using selected ion monitoring (SIM). The objective of this study was to develop a single HPLC method for the simultaneous detection, identification and quantitation of these drugs. The following drugs were simultaneously analyzed: Gamma-hydroxybutyrate (GHB), scopolamine, lysergic acid diethylamide, ketamine, flunitrazepam, and diphenhydramine. The results showed increased sensitivity with electrospray (ES) ionization versus atmospheric pressure chemical ionization (APCI) using HPLC/MS. HPLC/ES/MS was approximately six times more sensitive than HPLC/APCI/MS and about fifty times more sensitive than HPLC/UV. A limit of detection (LOD) of 100 ppb was achieved for drug analysis using this method. The average linear regression coefficient of correlation squared (r2) was 0.933 for HPLC/UV and 0.998 for HPLC/ES/MS. The detection limits achieved by this method allowed for the detection of drug dosages used in beverage tampering. This method can be used to screen beverages suspected of drug tampering. The results of this study demonstrated that solid phase microextraction (SPME) did not improve sensitivity as an extraction technique when compared to direct injections of the drug standards.
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.
Resumo:
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.