9 resultados para Chlorination of azo dyes

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a potential biocatalyst for use in asymmetric synthesis. The mechanisms of CPO catalysis are therefore of interest. The halogenation reaction, one of several chemical reactions that CPO catalyzes, is not fully understood and is the subject of this dissertation. The mechanism by which CPO catalyzes halogenation is disputed. It has been postulated that halogenation of substrates occurs at the active site. Alternatively, it has been proposed that hypochlorous acid, produced at the active site via oxidation of chloride, is released prior to reaction, so that halogenation occurs in solution. The free-solution mechanism is supported by the observation that halogenation of most substrates often occurs non-stereospecifically. On the other hand, the enzyme-bound mechanism is supported by the observation that some large substrates undergo halogenation stereospecifically. The major purpose of this research is to compare chlorination of the substrate β-cyclopentanedione in the two environments. One study was of the reaction with limited hydration because such a level of hydration is typical of the active site. For this work, a purely quantum mechanical approach was used. To model the aqueous environment, the limited hydration environment approach is not appropriate. Instead, reaction precursor conformations were obtained from a solvated molecular dynamics simulation, and reaction of potentially reactive molecular encounters was modeled with a hybrid quantum mechanical/molecular mechanical approach. Extensive work developing parameters for small molecules was pre-requisite for the molecular dynamics simulation. It is observed that a limited and optimized (active-site-like) hydration environment leads to a lower energetic barrier than the fully solvated model representative of the aqueous environment at room temperature, suggesting that the stable water network near the active site is likely to facilitate the chlorination mechanism. The influence of the solvent environment on the reaction barrier is critical. It is observed that stabilization of the catalytic water by other solvent molecules lowers the barrier for keto-enol tautomerization. Placement of water molecules is more important than the number of water molecules in such studies. The fully-solvated model demonstrates that reaction proceeds when the instantaneous dynamical water environment is close to optimal for stabilizing the transition state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. ^ To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. ^ To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O 2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fulgide and fulgimide family constitutes an important class of organic photochromic compounds. The ability of fulgides and fulgimides to interconvert between two key forms by irradiation of different wavelength of light has made them promising material in optical memory devices, optical switches and sensors, and specialty dyes and inks. Thermal stability and hydrolytic stability of fulgides and fulgimides are essential for their practical applications. A deuterated trifluoromethyl indolylfulgide was synthesized based on the synthetic pathway of the proteo trifluoromethyl indolylfulgide using commercially available deuterated starting materials. Deuteration of the isopropylidene group improved the thermal stability of the indolylfulgide by a factor of 7. ^ Fulgimides are the most important fulgide derivatives. Fulgimides improve the hydrolytic stability of fulgides by replacing the succinic anhydride ring with a succinimide ring. A novel trifluoromethyl N-ethoxycarbonylmethyl indolylfulgimide was synthesized from trifluoromethyl indolylfulgide. The trifluoromethyl indolylfulgide was synthesized on a large scale in five steps with an overall yield of 18%. The indolylfulgide was then converted to indolylfulgimide by aminolysis follow by dehydration. The N-ethoxycarbonylmethyl indolylfulgimide showed enhanced hydrolytic stability and photochemical stability in 70/30 ethanol/water. ^ Three novel aqueous soluble fulgimides, trifluoromethyl carboxylic acid indolylfulgimide, dicarboxylic acid indolylfulgimide, and H-carboxylic acid indolylfulgimide, were synthesized. In sodium phosphate buffer (pH 7.4) at 37 ºC, an unusual hydrolysis of the trifluoromethyl group of the closed form of the carboxylic acid indolylfulgimide resulted in the dicarboxylic acid indolylfulgimide which has an additional carboxylic acid group. The closed form of dicarboxylic acid indolylfulgimide was further decarboxylated to generate H-carboxylic acid indolylfulgimide which was not photochromic. The trifluoromethyl dicarboxylic acid indolylfulgimide is the most robust fulgimide yet reported in aqueous solution. ^ A novel aqueous soluble methyl carboxylic acid indolylfulgimide was synthesized from methyl indolylfulgide. The methyl indolylfulgide was synthesized in five steps with an overall yield of 21%. The methyl carboxylic acid indolylfulgimide was synthesized by aminolysis follow by dehydration. The methyl carboxylic acid indolylfulgimide is expected to have improved thermal and photochemical stability in aqueous solutions relative to the trifluoromethyl analog.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanistically and structurally chloroperoxidase (CPO) occupies a unique niche among heme containing enzymes. Chloroperoxidase catalyzes a broad range of reactions, such as oxidation of organic substrates, dismutation of hydrogen peroxide, and mono-oxygenation of organic molecules. To expand the synthetic utility of CPO and to appreciate the important interactions that lead to CPO’s exceptional properties, a site-directed mutagenesis study was undertaken. ^ Recombinant CPO and CPO mutants were heterologously expressed in Aspergillus niger. The overall protein structure was almost the same as that of wild type CPO, as determined by UV-vis, NMR and CD spectroscopies. Phenylalanine103, which was proposed to regulate substrate access to the active site by restricting the size of substrates and to control CPO’s enantioselectivity, was mutated to Ala. The ligand binding affinity and most importantly the catalytic activity of F103A was dramatically different from wild type CPO. The mutation essentially eliminated the chlorination and dismutation activities but enhanced, 4-10 fold, the epoxidation, peroxidation, and N-demethylation activities. As expected, the F103A mutant displayed dramatically improved epoxidation activity for larger, more branched styrene derivatives. Furthermore, F103A showed a distinctive enantioselectivity profile: losing enantioselectivity to styrene and cis-β-methylstyrene; having a different configuration preference on α-methylstyrene; showing higher enantioselectivites and conversion rates on larger, more branched substrates. Our results show that F103 acts as a switch box that controls the catalytic activity, substrate specificity, and product enantioselectivity of CPO. Given that no other mutant of CPO has displayed distinct properties, the results with F103A are dramatic. ^ The diverse catalytic activity of CPO has long been attributed to the presence of the proximal thiolate ligand. Surprisingly, a recent report on a C29H mutant suggested otherwise. A new CPO triple mutant C29H/C79H/C87H was prepared, in which all the cysteines were replaced by histidine to eliminate the possibility of cysteine coordinating to the heme. No active form protein was isolated, although, successful transformation and transcription was confirmed. The result suggests that Cys79 and Cys87 are critical to maintaining the structural scaffold of CPO. ^ In vitro biodegradation of nanotubes by CPO were examined by scanning electron microscope method, but little oxidation was observed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the ongoing "war on drugs" the seizure rates for phenethylamines and their analogues have been steadily increasing over the years. The illicit manufacture of these compounds has become big business all over the world making it all the more attractive to the inexperienced "cook". However, as a result, the samples produced are more susceptible to contamination with reactionary byproducts and leftover reagents. These impurities are useful in the analysis of seized drugs as their identities can help to determine the synthetic pathway used to make these drugs and thus, the provenance of these analytes. In the present work two fluorescent dyes, 4-fluoro-7-nitrobenzofurazan and 5-(4,6-dichlorotriazinyl)aminofluorescein, were used to label several phenethylamine analogues for electrophoretic separation with laser-induced fluorescence detection. The large scale to which law enforcement is encountering these compounds has the potential to create a tremendous backlog. In order to combat this, a rapid, sensitive method capable of full automation is required. Through the utilization of the inline derivatization method developed whereby analytes are labeled within the capillary efficiently in a minimum span of time, this can be achieved. The derivatization and separation parameters were optimized on the basis of a variety of experimentally determined factors in order to give highly resolved peaks in the fluorescence spectrum with limits of detection in the low µg/mL range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in kcat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was conducted to study the use of radiation in water treatment as an alternative to chlorination which has caused health concerns due to the formation of harmful disinfection by-products. Groundwater solutions from the Biscayne aquifer were radiated with Cobalt-60 gamma radiation and studied for changes in dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), fluorescence and trihalomethane formation potential (THMFP). Molecular fractionations were conducted by ultrafiltration. Effect of the combination of radiation/peroxide was studied for DOC and UV254. Radiation showed significant removal in DOC and THMFP. Similar results were seen in the fluorescence and UV absorbance experiments. Radiation/peroxide did not improve the DOC removal. Radiation of the groundwater samples broke the larger molecular weight fractions in to smaller fractions.