5 resultados para Chick biventer cervicis
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to investigate the ontogeny of auditory learning via operant contingency in Northern bobwhite (Colinus virginianus ) hatchlings and possible interaction between attention, orienting and learning during early development. Chicks received individual 5 min training sessions in which they received a playback of a bobwhite maternal call at a single delay following each vocalization they emitted. Playback was either from a single randomly chosen speaker or switched back and forth semi-randomly between two speakers during training. Chicks were tested 24 hrs later in a simultaneous choice test between the familiar and an unfamiliar maternal call. It was found that day-old chicks showed a significant time-specific decrement in auditory learning when trained with delays in the range of 470–910 ms between their vocalizations and call playback only when training involved two speakers. Two-day-old birds showed an even more sustained disruption of learning than day-old chicks, whereas three-day-old chicks showed a pattern of intermittent interference with their learning when trained at such delays. A similar but less severe decrement in auditory learning was found when chicks were provided with motor training in which playback was contingent upon chicks entering and exiting one of two colored squares placed on the floor of the arena. Chicks provided with playback of the call at randomly chosen delays each time they vocalized exhibited large fluctuations in their responsivity to the auditory stimulus as a function of delay—fluctuations which were correlated significantly with measures of chick learning, particularly at two-days-of-age. When playback was limited to a single location chicks no longer showed a time-specific disruption of their learning of the auditory stimulus. Sequential analyses revealed several patterns suggesting that an attentional process similar or analogous to attentional blink may have contributed both to the observed fluctuations in chick responsivity to the auditory stimulus as a function of delay and to the time-specific learning deficit shown by chicks provided with two-speaker training. The study highlights that learning can be substantially modulated by processes of orienting and attention and has a number of important implications for research within cognitive neuroscience, animal behavior and learning.
Resumo:
Anthropogenic habitat alterations and water-management practices have imposed an artificial spatial scale onto the once contiguous freshwater marshes of the Florida Everglades. To gain insight into how these changes may affect biotic communities, we examined whether variation in the abundance and community structure of large fishes (SL . 8 cm) in Everglades marshes varied more at regional or intraregional scales, and whether this variation was related to hydroperiod, water depth, floating mat volume, and vegetation density. From October 1997 to October 2002, we used an airboat electrofisher to sample large fishes at sites within three regions of the Everglades. Each of these regions is subject to unique watermanagement schedules. Dry-down events (water depth , 10 cm) occurred at several sites during spring in 1999, 2000, 2001, and 2002. The 2001 dry-down event was the most severe and widespread. Abundance of several fishes decreased significantly through time, and the number of days post-dry-down covaried significantly with abundance for several species. Processes operating at the regional scale appear to play important roles in regulating large fishes. The most pronounced patterns in abundance and community structure occurred at the regional scale, and the effect size for region was greater than the effect size for sites nested within region for abundance of all species combined, all predators combined, and each of the seven most abundant species. Non-metric multi-dimensional scaling revealed distinct groupings of sites corresponding to the three regions. We also found significant variation in community structure through time that correlated with the number of days post-dry-down. Our results suggest that hydroperiod and water management at the regional scale influence large fish communities of Everglades marshes.
Resumo:
The heart beat is regulated by the cardiac conduction system (CCS), a specialized group of cells that transmit electrical impulses around the heart chambers. During development, ventricular CCS cells originate from embryonic cardiomyocytes and not from the neural crest. Nonetheless, discoveries in chick implied that the cardiac neural crest (CNC) cells contribute to proper development of the ventricular CCS. In this report, the Splotch mouse mutant (Pax3sp), in which the CNC cells do not migrate to the heart, was used to investigate whether these cells also affect proper CCS development in mammals. Homozygote mutants (Pax3Sp!Sp) are lethal on 111 Embryonic Day 13 (E13), and can be phenotyped by spina bifida and exencephaly. Pax3Spi+ mice were crossed to obtain wild type, Pax3 Spi+ and Pax3 Sp!Sp embryos. Comparison of hematoxylin and eosin stained histological sections showed less trabeculation in El2.5 cardiac ventricles of Pax3Sp!Sp. Furthermore, immunofluorescence analysis with the Purkinje fiber marker Cx40 showed a qualitative difference between wild type and mutant hearts. Quantitative analysis indicated that Pax3 Sp!Sp ventricles had fewer Cx40 expressing cells, as well as less Cx40 being expressed per cell when compared to wild type ventricles. Immunofluorescence with the H3 histome mitosis antibody showed fewer proliferating cells in the ventricles of mutant embryos when compared to controls. These results suggest that CNCC affect the morphogenesis of cardiac ventricles and the development of the ventricular CCS by contributing cellular proliferation.
Resumo:
Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. ^ Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. ^ At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.^
Resumo:
Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.