35 resultados para Chemistry Techniques, Analytical.

em Digital Commons at Florida International University


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. ^ In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. ^ Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. ^ The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. ^ A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac troponin I (cTnI) is one of the most useful serum marker test for the determination of myocardial infarction (MI). The first commercial assay of cTnI was released for medical use in the United States and Europe in 1995. It is useful in determining if the source of chest pains, whose etiology may be unknown, is cardiac related. Cardiac TnI is released into the bloodstream following myocardial necrosis (cardiac cell death) as a result of an infarct (heart attack). In this research project the utility of cardiac troponin I as a potential marker for the determination of time of death is investigated. The approach of this research is not to investigate cTnI degradation in serum/plasma, but to investigate the proteolytic breakdown of this protein in heart tissue postmortem. If our hypothesis is correct, cTnI might show a distinctive temporal degradation profile after death. This temporal profile may have potential as a time of death marker in forensic medicine. The field of time of death markers has lagged behind the great advances in technology since the late 1850's. Today medical examiners are using rudimentary time of death markers that offer limited reliability in the medico-legal arena. Cardiac TnI must be stabilized in order to avoid further degradation by proteases in the extraction process. Chemically derivatized magnetic microparticles were covalently linked to anti-cTnI monoclonal antibodies. A charge capture approach was also used to eliminate the antibody from the magnetic microparticles given the negative charge on the microparticles. The magnetic microparticles were used to extract cTnI from heart tissue homogenate for further bio-analysis. Cardiac TnI was eluted from the beads with a buffer and analyzed. This technique exploits banding pattern on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by a western blot transfer to polyvinylidene fluoride (PVDF) paper for probing with anti-cTnI monoclonal antibodies. Bovine hearts were used as a model to establish the relationship of time of death and concentration/band-pattern given its homology to human cardiac TnI. The final concept feasibility was tested with human heart samples from cadavers with known time of death. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluated the capabilities of inductively coupled plasma mass spectrometry (ICP-MS) for elemental analysis of trace evidence. A method was developed and validated for the analysis of glass by ICP-MS. A database of ∼700 glass samples was analyzed for elemental composition by external calibration with internal standardization (EC) ICP-MS and refractive index (RI). Additional methods were developed during the course of this work using two well-known techniques, isotope dilution (ID) and laser ablation (LA). These methods were then applied to analyze subsets of this database. ICP-MS data from 161 containers, 45 headlamps, and 458 float glasses (among them at least 143 vehicle windows) are presented and summarized. Data from the analysis of ∼190 glass samples collected from a single glass manufacturing facility over a period of 53 months at different intervals, including 97 samples collected in a 24 hour period are presented. Data from the analysis of 125 glass samples representing 36 manufacturing plants in the U.S. are also presented. ^ The three methods used, ICP-MS, ID-ICP-MS and LA-ICP-MS, were shown to be excellent methods for distinguishing between different glass samples. The database provided information about the variability of refractive index and elemental composition in glasses from diverse population types. Using the proposed methods, the database supports the hypothesis that different glass samples have different elemental profiles and a comparison between fragments from the same source results in indistinguishable profiles. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Locard exchange principle proposes that a person can not enter or leave an area or come in contact with an object, without an exchange of materials. In the case of scent evidence, the suspect leaves his scent in the location of the crime scene itself or on objects found therein. Human scent evidence collected from a crime scene can be evaluated through the use of specially trained canines to determine an association between the evidence and a suspect. To date, there has been limited research as to the volatile organic compounds (VOCs) which comprise human odor and their usefulness in distinguishing among individuals. For the purposes of this research, human scent is defined as the most abundant volatile organic compounds present in the headspace above collected odor samples. ^ An instrumental method has been created for the analysis of the VOCs present in human scent, and has been utilized for the optimization of materials used for the collection and storage of human scent evidence. This research project has identified the volatile organic compounds present in the headspace above collected scent samples from different individuals and various regions of the body, with the primary focus involving the armpit area and the palms of the hands. Human scent from the armpit area and palms of an individual sampled over time shows lower variation in the relative peak area ratio of the common compounds present than what is seen across a population. A comparison of the compounds present in human odor for an individual over time, and across a population has been conducted and demonstrates that it is possible to instrumentally differentiate individuals based on the volatile organic compounds above collected odor samples. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate knowledge of the time since death, or postmortem interval (PMI), has enormous legal, criminological, and psychological impact. In this study, an investigation was made to determine whether the relationship between the degradation of the human cardiac structure protein Cardiac Troponin T and PMI could be used as an indicator of time since death, thus providing a rapid, high resolution, sensitive, and automated methodology for the determination of PMI. ^ The use of Cardiac Troponin T (cTnT), a protein found in heart tissue, as a selective marker for cardiac muscle damage has shown great promise in the determination of PMI. An optimized conventional immunoassay method was developed to quantify intact and fragmented cTnT. A small sample of cardiac tissue, which is less affected than other tissues by external factors, was taken, homogenized, extracted with magnetic microparticles, separated by SDS-PAGE, and visualized with Western blot by probing with monoclonal antibody against cTnT. This step was followed by labeling and available scanners. This conventional immunoassay provides a proper detection and quantitation of cTnT protein in cardiac tissue as a complex matrix; however, this method does not provide the analyst with immediate results. Therefore, a competitive separation method using capillary electrophoresis with laser-induced fluorescence (CE-LIF) was developed to study the interaction between human cTnT protein and monoclonal anti-TroponinT antibody. ^ Analysis of the results revealed a linear relationship between the percent of degraded cTnT and the log of the PMI, indicating that intact cTnT could be detected in human heart tissue up to 10 days postmortem at room temperature and beyond two weeks at 4C. The data presented demonstrates that this technique can provide an extended time range during which PMI can be more accurately estimated as compared to currently used methods. The data demonstrates that this technique represents a major advance in time of death determination through a fast and reliable, semi-quantitative measurement of a biochemical marker from an organ protected from outside factors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, μXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03–0.8 ng for the GC-MS and between 0.03–2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing an association between the scent a perpetrator left at a crime scene to the odor of the suspect of that crime is the basis for the use of human scent identification evidence in a court of law. Law enforcement agencies gather evidence through the collection of scent from the objects that a perpetrator may have handled during the execution of the criminal act. The collected scent evidence is consequently presented to the canines for identification line-up procedures with the apprehended suspects. Presently, canine scent identification is admitted as expert witness testimony, however, the accurate behavior of the dogs and the scent collection methods used are often challenged by the court system. The primary focus of this research project entailed an evaluation of contact and non-contact scent collection techniques with an emphasis on the optimization of collection materials of different fiber chemistries to evaluate the chemical odor profiles obtained using varying environment conditions to provide a better scientific understanding of human scent as a discriminative tool in the identification of suspects. The collection of hand odor from female and male subjects through both contact and non-contact sampling approaches yielded new insights into the types of VOCs collected when different materials are utilized, which had never been instrumentally performed. Furthermore, the collected scent mass was shown to be obtained in the highest amounts for both gender hand odor samples on cotton sorbent materials. Compared to non-contact sampling, the contact sampling methods yielded a higher number of volatiles, an enhancement of up to 3 times, as well as a higher scent mass than non-contact methods by more than an order of magnitude. The evaluation of the STU-100 as a non-contact methodology highlighted strong instrumental drawbacks that need to be targeted for enhanced scientific validation of current field practices. These results demonstrated that an individual's human scent components vary considerably depending on the method used to collect scent from the same body region. This study demonstrated the importance of collection medium selection as well as the collection method employed in providing a reproducible human scent sample that can be used to differentiate individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food-web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food-web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advancements in the micro-and nano-scale fabrication techniques have opened up new avenues for the development of portable, scalable and easier-to-use biosensors. Over the last few years, electrodes made of carbon have been widely used as sensing units in biosensors due to their attractive physiochemical properties. The aim of this research is to investigate different strategies to develop functionalized high surface carbon micro/nano-structures for electrochemical and biosensing devices. High aspect ratio three-dimensional carbon microarrays were fabricated via carbon microelectromechanical systems (C-MEMS) technique, which is based on pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. (i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. Electrochemical characterization showed that porous carbon thin film electrodes prepared by using F127 as porogen had an effective surface area (Aeff 185%) compared to the conventional carbon electrode. To achieve enhanced electrochemical sensitivity for C-MEMS based functional devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The amperometric response of graphene/carbon micropillar electrode arrays exhibited higher electrochemical activity, improved charge transfer and a linear response towards H2O2 detection between 250&mgr;M to 5.5mM. Furthermore, carbon structures with dimensions from 50 nano-to micrometer level have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic resist polymer. Microstructure, elemental composition and resistivity characterization of the carbon nanostructures produced by this process were very similar to conventional photoresist derived carbon. Surface functionalization of the carbon nanostructures was performed using direct amination technique. Considering the need for requisite functional groups to covalently attach bioreceptors on the carbon surface for biomolecule detection, different oxidation techniques were compared to study the types of carbon-oxygen groups formed on the surface and their percentages with respect to different oxidation pretreatment times. Finally, a label-free detection strategy using signaling aptamer/protein binding complex for platelet-derived growth factor oncoprotein detection on functionalized three-dimensional carbon microarrays platform was demonstrated. The sensor showed near linear relationship between the relative fluorescence difference and protein concentration even in the sub-nanomolar range with an excellent detection limit of 5 pmol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cotton is the most abundant natural fiber in the world. Many countries are involved in the growing, importation, exportation and production of this commodity. Paper documentation claiming geographic origin is the current method employed at U.S. ports for identifying cotton sources and enforcing tariffs. Because customs documentation can be easily falsified, it is necessary to develop a robust method for authenticating or refuting the source of the cotton commodities. This work presents, for the first time, a comprehensive approach to the chemical characterization of unprocessed cotton in order to provide an independent tool to establish geographic origin. Elemental and stable isotope ratio analysis of unprocessed cotton provides a means to increase the ability to distinguish cotton in addition to any physical and morphological examinations that could be, and are currently performed. Elemental analysis has been conducted using LA-ICP-MS, LA-ICP-OES and LIBS in order to offer a direct comparison of the analytical performance of each technique and determine the utility of each technique for this purpose. Multivariate predictive modeling approaches are used to determine the potential of elemental and stable isotopic information to aide in the geographic provenancing of unprocessed cotton of both domestic and foreign origin. These approaches assess the stability of the profiles to temporal and spatial variation to determine the feasibility of this application. This dissertation also evaluates plasma conditions and ablation processes so as to improve the quality of analytical measurements made using atomic emission spectroscopy techniques. These interactions, in LIBS particularly, are assessed to determine any potential simplification of the instrumental design and method development phases. This is accomplished through the analysis of several matrices representing different physical substrates to determine the potential of adopting universal LIBS parameters for 532 nm and 1064 nm LIBS for some important operating parameters. A novel approach to evaluate both ablation processes and plasma conditions using a single measurement was developed and utilized to determine the "useful ablation efficiency" for different materials. The work presented here demonstrates the potential for an a priori prediction of some probable laser parameters important in analytical LIBS measurement.