2 resultados para Centre for Theoretical Studies

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research examines the performance of Hong Kong hotel websites in terms of information quality, and compares the performance among different hotel categories. Different from exsisting theoretical studies analyzing hotel websites, this research incorporates the perceptions of hotel guests and practitioners in the evaluation development process. Empirical results reveal that significant differences exist in the performance scores of luxury, mid-priced, and economy hotels. The authors also discuss implications for hotel industry practitioners and policymakers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental and theoretical studies regarding noise processes in various kinds of AlGaAs/GaAs heterostructures with a quantum well are reported. The measurement processes, involving a Fast Fourier Transform and analog wave analyzer in the frequency range from 10 Hz to 1 MHz, a computerized data storage and processing system, and cryostat in the temperature range from 78 K to 300 K are described in detail. The current noise spectra are obtained with the “three-point method”, using a Quan-Tech and avalanche noise source for calibration. ^ The properties of both GaAs and AlGaAs materials and field effect transistors, based on the two-dimensional electron gas in the interface quantum well, are discussed. Extensive measurements are performed in three types of heterostructures, viz., Hall structures with a large spacer layer, modulation-doped non-gated FETs, and more standard gated FETs; all structures are grown by MBE techniques. ^ The Hall structures show Lorentzian generation-recombination noise spectra with near temperature independent relaxation times. This noise is attributed to g-r processes in the 2D electron gas. For the TEGFET structures, we observe several Lorentzian g-r noise components which have strongly temperature dependent relaxation times. This noise is attributed to trapping processes in the doped AlGaAs layer. The trap level energies are determined from an Arrhenius plot of log (τT2) versus 1/T as well as from the plateau values. The theory to interpret these measurements and to extract the defect level data is reviewed and further developed. Good agreement with the data is found for all reported devices. ^