3 resultados para Central Basin, Pacific Ocean

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to test 3 hypotheses: (a) that late Miocene to early Pliocene constriction and complete closure of the Central American Seaway (CAS), connecting tropical Atlantic and East Equatorial Pacific (EEP) oceans, caused decreased productivity in the Caribbean, due to reduced coastal upwelling and an end to the connection with high-productivity Pacific waters, (b) reduced paleoproductivity resulted in decreased diversity in the Caribbean and, (c) this decreased availability of food (reduced paleoproductivity) was responsible for larger mean test size in the three most common benthic foraminiferal species Epistominella exigua, Oridorsalis umbonatus and Globocassidulina subglobosa. ^ These are tested by applying correlation analysis to 7 groups of paleoceanographic proxies, 3 indices of diversity measures and mean test size data from the Caribbean Ocean Drilling Project Site 999, to 47 core samples for the interval between 8.3-2.5 Ma. Results are compared with published Caribbean and Pacific deep-sea records. ^ The Caribbean, between 8.3-7.9 Ma, experienced reduced current velocity and lower ventilation of bottom waters. Thereafter, until 4.2 Ma, the seasonality of phytodetritus input increased and ventilation further reduced. From 4.2-2.5 Ma, paleoproductivity decreased, current velocity reduced, ventilation improved, and the seasonality of phytodetrital input decreased dramatically. The benthic foraminiferal diversity followed the same trend as paleoproductivity. Individual correlation analysis between mean test size of benthic foraminiferal species Epistominella exigua, Oridorsalis umbonatus and Globocassidulina subglobosa and paleoceanographic proxies yielded a positive and significant relationship with paleoproductivity. However, a combined datasets of all 3 species yielded a negative and significant relationship with species abundance. ^ Thus, the study concludes that (a) the gradual closure of the CAS led Caribbean diversity and paleoproductivity to decrease abruptly at 7.9 Ma, when the nutrient-rich Pacific deep waters were cut off, and then, again with the complete closure of the seaway at 4.2 Ma, (b) diversity and paleoproductivity are positively correlated in the Caribbean and (c) that the availability of food is an overriding factor that influences mean test size; lower availability of food and decreased abundance leads to larger test size. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.