6 resultados para Central Asia
em Digital Commons at Florida International University
Resumo:
The neighboring regions of Xinjiang and Central Asia, linked historically on the famous Silk Road, later developed separately as a result of the incorporation of the former into China and the latter into the Russian Empire and Soviet Union. Thus, interaction between Xinjiang and Central Asia has been constrained by the nature of the Sino-Russian or Sino-Soviet relationship. However, the demise of the Soviet Union--which resulted in the independence of five Central Asian states--and the recent economic reforms in the People's Republic of China suggest dramatic new possibilities for interregional cooperation.^ In this thesis, an historical and comparative approach is employed to study Chinese policies in Xinjiang and Soviet policies in Central Asia, and concludes that despite several decades of separate development, the common ethnic and religious origins of the indigenous peoples and their former ties will facilitate greater interaction between the two regions. ^
Resumo:
Xinjiang, once described by Owen Lattimore as the "pivot of Asia", has played a strategically important role in China's national defense and security. Historically linked on the famous Silk Road with Central Asia, Xinjiang was crucial to East-West economic and cultural exchanges. During the period of Russian/Soviet expansion into Central Asia and Sino-Soviet rivalry, China's need for Xinjiang's defense and territorial integrity became paramount, and consequently Xinjiang's economy was relegated to the periphery.^ The demise of the Soviet Union--which resulted in the independence of five Central Asian states--and China's reform suggest dramatic new possibilities for Xinjiang's regional development as well as interregional cooperation. As China has begun to shift regional emphasis to the interior, Xinjiang's economic development will be accelerated. With the growth of Sino/Xinjiang-Central Asian relations, Xinjiang's importance will not only be borne out in terms of defense and security, but more significantly in terms of trade and economics. At the century's end and the beginning of the 21st century, Xinjiang will likely move away from the periphery and play an increasingly pivotal role in the economy. ^
Resumo:
This study explores how great powers not allied with the United States formulate their grand strategies in a unipolar international system. Specifically, it analyzes the strategies China and Russia have developed to deal with U.S. hegemony by examining how Moscow and Beijing have responded to American intervention in Central Asia. The study argues that China and Russia have adopted a soft balancing strategy of to indirectly balance the United States at the regional level. This strategy uses normative capabilities such as soft power, alternative institutions and regionalization to offset the overwhelming material hardware of the hegemon. The theoretical and methodological approach of this dissertation is neoclassical realism. Chinese and Russian balancing efforts against the United States are based on their domestic dynamics as well as systemic constraints. Neoclassical realism provides a bridge between the internal characteristics of states and the environment which those states are situated. Because China and Russia do not have the hardware (military or economic power) to directly challenge the United States, they must resort to their software (soft power and norms) to indirectly counter American preferences and set the agenda to obtain their own interests. Neoclassical realism maintains that soft power is an extension of hard power and a reflection of the internal makeup of states. The dissertation uses the heuristic case study method to demonstrate the efficacy of soft balancing. Such case studies help to facilitate theory construction and are not necessarily the demonstrable final say on how states behave under given contexts. Nevertheless, it finds that China and Russia have increased their soft power to counterbalance the United States in certain regions of the world, Central Asia in particular. The conclusion explains how soft balancing can be integrated into the overall balance-of-power framework to explain Chinese and Russian responses to U.S. hegemony. It also suggests that an analysis of norms and soft power should be integrated into the study of grand strategy, including both foreign policy and military doctrine.
Resumo:
In this study, I divided samples from individuals within Afghanistan based upon geography (i.e., north versus south). I determined allelic frequencies and other statistical parameters for 15 STR loci (i.e., D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, Dl3S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, and FGA). I conducted pairwise comparisons with 19 neighboring Eurasian populations to assign Gstatistics and p-values. Categorizing the populations into five groups (i.e., Central Asia, East Asia, South Asia, the Middle East, and the Caucasus/Anatolia), I derived values for intra-population, inter-population, and total variance. Admixture analyses determined the highest allelic contributions to be from the Caucasus/ Anatolia, while negligible contributions were made by Central Asia and East Asia. A Correspondence Analysis revealed clustering of both northern and southern Afghanistan with Georgia, Turkey, northern Iran, and southern Iran of the Caucasus/ Anatolia and the Middle East. A Neighbor-Joining phylogenetic tree was constructed to generate bootstrap values over 1, 000 reiterations.
Resumo:
El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.
Resumo:
El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.