2 resultados para Castor oil based polyurethane
em Digital Commons at Florida International University
Resumo:
The extensive impact and consequences of the 2010 Deep Water Horizon oil drilling rig failure in the Gulf of Mexico, together with expanding drilling activities in the Cuban Exclusive Economic zone, have cast a spotlight on Cuban oil development. The threat of a drilling rig failure has evolved from being only hypothetical to a potential reality with the commencement of active drilling in Cuban waters. The disastrous consequences of a drilling rig failure in Cuban waters will spread over a number of vital interests of the US and of nations in the Caribbean in the general environs of Cuba. The US fishing and tourist industries will take major blows from a significant oil spill in Cuban waters. Substantial ecological damage and damage to beaches could occur for the US, Mexico, Haiti and other countries as well. The need exists for the US to have the ability to independently monitor the reality of Cuban oceanic oil development. The advantages of having an independent US early warning system providing essential real-time data on the possible failure of a drilling rig in Cuban waters are numerous. An ideal early warning system would timely inform the US that an event has occurred or is likely to occur in, essentially, real-time. Presently operating monitoring systems that could provide early warning information are satellite-based. Such systems can indicate the locations of both drilling rigs and operational drilling platforms. The system discussed/proposed in this paper relies upon low-frequency underwater sound. The proposed system can complement existing monitoring systems, which offer ocean-surface information, by providing sub-ocean surface, near-real time, information. This “integrated system” utilizes and combines (integrates) many different forms of information, some gathered through sub-ocean surface systems, and some through electromagnetic-based remote sensing (satellites, aircraft, unmanned arial vehicles), and other methods as well. Although the proposed integrated system is in the developmental stage, it is based upon well-established technologies.
Resumo:
Simarouba glauca, a non-edible oilseed crop native to South Florida, is gaining popularity as a feedstock for the production of biodiesel. The University of Agriculture Sciences in Bangalore, India has developed a biodiesel production model based on the principles of decentralization, small scales, and multiple fuel sources. Success of such a program depends on conversion efficiencies at multiple stages. The conversion efficiency of the field-level, decentralized production model was compared with the in-laboratory conversion efficiency benchmark. The study indicated that the field-level model conversion efficiency was less than that of the lab-scale set up. The fuel qualities and characteristics of the Simarouba glauca biodiesel were tested and found to be the standards required for fuel designation. However, this research suggests that for Simarouba glauca to be widely accepted as a biodiesel feedstock further investigation is still required.