23 resultados para Carlota, Empress, consort of Maximilian, Emperor of Mexico, 1840-1927.
em Digital Commons at Florida International University
Resumo:
Most ethnopharmacological studies overlook food plants, yet many edible plants, also have medicinal value. I documented plants that are used as both food and medicine by the Totonac of Zapotitlan de Mendez, Mexico and recorded the presence of selected secondary compounds, and physical characteristics in these plants. Photoactivity, antimicrobial, and antifungal assays also were performed. The presence of these properties were compared among food/medicine plants, food, medicinal, and randomly selected plants. I predicted that a higher percentage of medicinal plants would contain the secondary compounds, physical characteristics, and bioactivity compared to the other groups. Phenolics and cyanogenic glycosides in the medicinal group were significantly greater than in the food/medicine group. The food plants did not differ greatly from the medicinal plants. This research indicates that including food plants in ethnomedical studies could provide a more complete knowledge of peoples therapeutic resources and practices. ^
Resumo:
The Chihuahua desert is one of the most biologically diverse ecosystems in the world, but suffers serious degradation because of changes in fire regimes resulting in large catastrophic fires. My study was conducted in the Sierra La Mojonera (SLM) natural protected area in Mexico. The purpose of this study was to implement the use of FARSITE fire modeling as a fire management tool to develop an integrated fire management plan at SLM. Firebreaks proved to detain 100% of wildfire outbreaks. The rosetophilous scrub experienced the fastest rate of fire spread and lowland creosote bush scrub experienced the slowest rate of fire spread. March experienced the fastest rate of fire spread, while September experienced the slowest rate of fire spread. The results of my study provide a tool for wildfire management through the use geospatial technologies and, in particular, FARSITE fire modeling in SLM and Mexico.
Resumo:
This dissertation examines local governments' efforts to promote economic development in Latin America. The research uses a mixed method to explore how cities make decisions to innovate, develop, and finance economic development programs. First, this study provides a comparative analysis of decentralization policies in Argentina and Mexico as a means to gain a better understanding of the degree of autonomy exercised by local governments. Then, it analyzes three local governments each within the province of Santa Fe, Argentina and the State of Guanajuato, Mexico. The principal hypothesis of this dissertation is that if local governments collect more own-source tax revenue, they are more likely to promote economic development and thus, in turn, promote growth for their region. ^ By examining six cities, three of which are in Santa Fe—Rosario, Santa Fe (capital) and Rafaela—and three in Guanajuato—Leon, Guanajuato (capital) and San Miguel de Allende, this dissertation provides a better understanding of public finances and tax collection efforts of local governments in Latin America. Specific attention is paid to each city's budget authority to raise new revenue and efforts to promote economic development. The research also includes a large statistical dataset of Mexico's 2,454 municipalities and a regression analysis that evaluates local tax efforts on economic growth, controlling for population, territorial size, and the professional development. In order to generalize these results, the research tests these discoveries by using statistical data gathered from a survey administered to Latin American municipal officials. ^ The dissertation demonstrates that cities, which experience greater fiscal autonomy measured by the collection of more own-source revenue, are better able to stimulate effective economic development programs, and ultimately, create jobs within their communities. The results are bolstered by a large number of interviews, which were conducted with over 100 finance specialists, municipal presidents, and local authorities. The dissertation also includes an in-depth literature review on fiscal federalism, decentralization, debt financing and local development. It concludes with a discussion of the findings of the study and applications for the practice of public administration.^
Resumo:
This study took place at one of the intercultural universities (IUs) of Mexico that serve primarily indigenous students. The IUs are pioneers in higher education despite their numerous challenges (Bertely, 1998; Dietz, 2008; Pineda & Landorf, 2010; Schmelkes, 2009). To overcome educational inequalities among their students (Ahuja, Berumen, Casillas, Crispín, Delgado et al., 2004; Schmelkes, 2009), the IUs have embraced performance-based assessment (PBA; Casillas & Santini, 2006). PBA allows a shared model of power and control related to learning and evaluation (Anderson, 1998). While conducting a review on PBA strategies of the IUs, the researcher did not find a PBA instrument with valid and reliable estimates. The purpose of this study was to develop a process to create a PBA instrument, an analytic general rubric, with acceptable validity and reliability estimates to assess students' attainment of competencies in one of the IU's majors, Intercultural Development Management. The Human Capabilities Approach (HCA) was the theoretical framework and a sequential mixed method (Creswell, 2003; Teddlie & Tashakkori, 2009) was the research design. IU participants created a rubric during two focus groups, and seven Spanish-speaking professors in Mexico and the US piloted using students' research projects. The evidence that demonstrates the attainment of competencies at the IU is a complex set of actual, potential and/or desired performances or achievements, also conceptualized as "functional capabilities" (FCs; Walker, 2008), that can be used to develop a rubric. Results indicate that the rubric's validity and reliability estimates reached acceptable estimates of 80% agreement, surpassing minimum requirements (Newman, Newman, & Newman, 2011). Implications for practice involve the use of PBA within a formative assessment framework, and dynamic inclusion of constituencies. Recommendations for further research include introducing this study's instrument-development process to other IUs, conducting parallel mixed design studies exploring the intersection between HCA and assessment, and conducting a case study exploring assessment in intercultural settings. Education articulated through the HCA empowers students (Unterhalter & Brighouse, 2007; Walker, 2008). This study aimed to contribute to the quality of student learning assessment at the IUs by providing a participatory process to develop a PBA instrument.
Resumo:
This study took place at one of the intercultural universities (IUs) of Mexico that serve primarily indigenous students. The IUs are pioneers in higher education despite their numerous challenges (Bertely, 1998; Dietz, 2008; Pineda & Landorf, 2010; Schmelkes, 2009). To overcome educational inequalities among their students (Ahuja, Berumen, Casillas, Crispín, Delgado et al., 2004; Schmelkes, 2009), the IUs have embraced performance-based assessment (PBA; Casillas & Santini, 2006). PBA allows a shared model of power and control related to learning and evaluation (Anderson, 1998). While conducting a review on PBA strategies of the IUs, the researcher did not find a PBA instrument with valid and reliable estimates. The purpose of this study was to develop a process to create a PBA instrument, an analytic general rubric, with acceptable validity and reliability estimates to assess students’ attainment of competencies in one of the IU’s majors, Intercultural Development Management. The Human Capabilities Approach (HCA) was the theoretical framework and a sequential mixed method (Creswell, 2003; Teddlie & Tashakkori, 2009) was the research design. IU participants created a rubric during two focus groups, and seven Spanish-speaking professors in Mexico and the US piloted using students’ research projects. The evidence that demonstrates the attainment of competencies at the IU is a complex set of actual, potential and/or desired performances or achievements, also conceptualized as “functional capabilities” (FCs; Walker, 2008), that can be used to develop a rubric. Results indicate that the rubric’s validity and reliability estimates reached acceptable estimates of 80% agreement, surpassing minimum requirements (Newman, Newman, & Newman, 2011). Implications for practice involve the use of PBA within a formative assessment framework, and dynamic inclusion of constituencies. Recommendations for further research include introducing this study’s instrument-development process to other IUs, conducting parallel mixed design studies exploring the intersection between HCA and assessment, and conducting a case study exploring assessment in intercultural settings. Education articulated through the HCA empowers students (Unterhalter & Brighouse, 2007; Walker, 2008). This study aimed to contribute to the quality of student learning assessment at the IUs by providing a participatory process to develop a PBA instrument.
Resumo:
The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household's evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household's optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.
Resumo:
We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically ,0.25 mmol L21, or 8 mg L21) indicate the oligotrophic, P-limited nature of this large freshwater–estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ø0.5 m mol L21) demonstrate the marine source for this limiting nutrient. This ‘‘upside down’’ phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Nin˜o–Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Nin˜o3 ENSO index (which indicates an ENSO event when positive and a La Nin˜a event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.
Resumo:
This paper synthesizes research conducted during the first 5–6 years of the Florida Coastal Everglades Long-Term Ecological Research Program (FCE LTER). My objectives are to review our research to date, and to present a new central theme and conceptual approach for future research. Our research has focused on understanding how dissolved organic matter (DOM) from upstream oligotrophic marshes interacted with a marine source of the limiting nutrient, phosphorus (P), to control productivity in the oligohaline estuarine ecotone. We have been working along freshwater to marine transects in two drainage basins located in Everglades National Park (ENP). The Shark River Slough transect (SRS) has a direct connection to the Gulf of Mexico, providing this estuarine ecotone with a source of marine P. The oligohaline ecotone along our southern Everglades transect (TS/Ph), however, is separated from this marine P source by the Florida Bay estuary. We originally hypothesized an ecosystem productivity peak in the SRS ecotone, driven by the interaction of marine P and Everglades DOM, but no such productivity peak in the TS/Ph ecotone because of this lack of marine P. Our research to date has tended to show the opposite pattern, however, with many ecosystem components showing enhanced productivity in the TS/Ph ecotone, but not in the SRS ecotone. Water column P concentrations followed a similar pattern, with unexpectedly high P in the TS/Ph ecotone during the dry season. Our organic geochemical research has shown that Everglades DOM is more refractory than originally hypothesized. We have also begun to understand the importance of detrital organic matter production and transport to ecotone dynamics and as the base of aquatic food webs. Our future research will build on this substantial body of knowledge about these oligotrophic estuaries. We will direct our efforts more strongly on biophysical dynamics in the oligohaline ecotone regions. Specifically, we will be focusing on inputs to these regions from four primary water sources: freshwater Everglades runoff, net precipitation, marine inputs, and groundwater. We are hypothesizing that dry season groundwater inputs of P will be particularly important to TS/Ph ecotone dynamics because of longer water residence times in this area. Our organic geochemical, biogeochemical, and ecosystem energetics work will focus more strongly on the importance of detrital organics and will take advantage of a key Everglades Restoration project, scheduled for 2008 or 2009, that will increase freshwater inputs to our SRS transect only. Finally, we will also begin to investigate the human dimensions of restoration, and of a growing population in south Florida that will become increasingly dependent on the Everglades for critical ecosystem services (including fresh water) even as its growth presents challenges to Everglades sustainability.
Resumo:
A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Nin˜o events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the ‘‘white zone’’ freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.
Resumo:
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.
Resumo:
Precipitation data collected from five sites in south Florida indicate a strong seasonal and spatial variation in δ18O and δD, despite the relatively limited geographic coverage and low-lying elevation of each of the collection sites. Based upon the weighted-mean stable isotope values, the sites were classified as coastal Atlantic, inland, and lower Florida Keys. The coastal Atlantic sites had weighted-mean values of δ18O and δD of −2.86‰ and −12.8‰, respectively, and exhibited a seasonal variation with lower δ18O and δD values in the summer wet-season precipitation (δ18O = −3.38‰, δD = −16.5‰) as compared to the winter-time precipitation (δ18O = −1.66‰, δD = −3.2‰). The inland site was characterized as having the highest d-excess value (+13.3‰), signifying a contribution of evaporated Everglades surface water to the local atmospheric moisture. In spite of its lower latitude, the lower Keys site located at Long Key had the lowest weighted-mean stable isotope values (δ18O = −3.64‰, δD = −20.2‰) as well as the lowest d-excess value of (+8.8‰). The lower δD and δ18O values observed at the Long Key site reflect the combined effects of oceanic vapor source, fractionation due to local precipitation, and slower equilibration of the larger raindrops nucleated by a maritime aerosol. Very low δ18O and δD values (δ18O < −6‰, δD < −40‰) were observed just prior to the passage of hurricanes from the Gulf of Mexico as well as during cold fronts from the north-west. These results suggest that an oceanic vapor source region to the west, may be responsible for the extremely low δD and δ18O values observed during some tropical storms and cold fronts.
Resumo:
Historic changes in water-use management in the Florida Everglades have caused the quantity of freshwater inflow to Florida Bay to decline by approximately 60% while altering its timing and spatial distribution. Two consequences have been (1) increased salinity throughout the bay, including occurrences of hypersalinity, coupled with a decrease in salinity variability, and (2) change in benthic habitat structure. Restoration goals have been proposed to return the salinity climates (salinity and its variability) of Florida Bay to more estuarine conditions through changes in upstream water management, thereby returning seagrass species cover to a more historic state. To assess the potential for meeting those goals, we used two modeling approaches and long-term monitoring data. First, we applied the hydrological mass balance model FATHOM to predict salinity climate changes in sub-basins throughout the bay in response to a broad range of freshwater inflow from the Everglades. Second, because seagrass species exhibit different sensitivities to salinity climates, we used the FATHOM-modeled salinity climates as input to a statistical discriminant function model that associates eight seagrass community types with water quality variables including salinity, salinity variability, total organic carbon, total phosphorus, nitrate, and ammonium, as well as sediment depth and light reaching the benthos. Salinity climates in the western sub-basins bordering the Gulf of Mexico were insensitive to even the largest (5-fold) modeled increases in freshwater inflow. However, the north, northeastern, and eastern sub-basins were highly sensitive to freshwater inflow and responded to comparatively small increases with decreased salinity and increased salinity variability. The discriminant function model predicted increased occurrences ofHalodule wrightii communities and decreased occurrences of Thalassia testudinum communities in response to the more estuarine salinity climates. The shift in community composition represents a return to the historically observed state and suggests that restoration goals for Florida Bay can be achieved through restoration of freshwater inflow from the Everglades.
Resumo:
The spatial and temporal distributions of the epiphytic diatom flora on Thalassia testudinum was described within the Florida Bay estuary and at one Atlantic site east of the Florida Keys over a 1-year period. Species of the genus Mastogloia dominated the epiphytic diatom flora (82 out of 332 total species). Nonmetric Multidimensional Scaling (NMDS) and Analysis of Similarity (ANOSIM) revealed four distinct spatial assemblages and two temporal assemblages. Eastern and western Florida Bay assemblages were identified within the estuary. The eastern diatom assemblage was characterized by high relative abundances of Brachysira aponina and Nitzschia liebetruthii, while the western assemblage was characterized by the abundance of Reimerothrix floridensis, particularly during summer. Two diverse and distinct marine assemblages, one located in the Gulf of Mexico along the western edge of Florida Bay and the other behind the Florida reef tract in the Atlantic Ocean, were also identified. Analysis of the spatial distribution of diatoms and water quality characteristics within Florida Bay suggest that these assemblages may be structured by salinity and nutrient availability, particularly P. The Gulf of Mexico and the western Florida Bay assemblages were associated with higher water column salinities and TP concentrations and lower DIN concentrations and TN:TP ratios relative to the eastern Florida Bay assemblage. The temporal variation in diatom assemblages was associated with water temperature, though temporal indicator species were few relative to the number of spatial indicators.
Resumo:
In tropical and subtropical estuaries, gradients of primary productivity and salinity are generally invoked to explain patterns in community structure and standing crops of fishes. We documented spatial and temporal patterns in fish community structure and standing crops along salinity and nutrient gradients in two subtropical drainages of Everglades National Park, USA. The Shark River drains into the Gulf of Mexico and experiences diurnal tides carrying relatively nutrient enriched waters, while Taylor River is more hydrologically isolated by the oligohaline Florida Bay and experiences no discernable lunar tides. We hypothesized that the more nutrient enriched system would support higher standing crops of fishes in its mangrove zone. We collected 50 species of fish from January 2000 to April 2004 at six sampling sites spanning fresh to brackish salinities in both the Shark and Taylor River drainages. Contrary to expectations, we observed lower standing crops and density of fishes in the more nutrient rich tidal mangrove forest of the Shark River than in the less nutrient rich mangrove habitats bordering the Taylor River. Tidal mangrove habitats in the Shark River were dominated by salt-tolerant fish and displayed lower species richness than mangrove communities in the Taylor River, which included more freshwater taxa and yielded relatively higher richness. These differences were maintained even after controlling for salinity at the time of sampling. Small-scale topographic relief differs between these two systems, possibly created by tidal action in the Shark River. We propose that this difference in topography limits movement of fishes from upstream marshes into the fringing mangrove forest in the Shark River system, but not the Taylor River system. Understanding the influence of habitat structure, including connectivity, on aquatic communities is important to anticipate effects of construction and operational alternatives associated with restoration of the Everglades ecosystem.
Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA
Resumo:
This study aimed to evaluate tidal and seasonal variations in concentrations and fluxes of nitrogen (NH4 +, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total phosphorus) in a riverine mangrove forest using the flume technique during the dry (May, December 2003) and rainy (October 2003) seasons in the Shark River Estuary, Florida. Tidal water temperatures during the sampling period were on average 29.4 (± 0.4) oC in May and October declining to 20 oC (± 4) in December. Salinity values remained constant in May (28 ± 0.12 PSU), whereas salinity in October and December ranged from 6‒21 PSU and 9‒25 PSU, respectively. Nitrate + nitrite (N+N) and NH4+ concentrations ranged from 0.0 to 3.5 μM and from 0 to 4.8 μM throughout the study period, respectively. Mean TN concentrations in October and December were 39 (±0.8) μM and 37 (±1.5) μM, respectively. SRP and N+N concentrations in the flume increased with higher frequency in flooding tides. TP concentrations ranged between 0.2‒2.9 μM with higher concentrations in the dry season than in the rainy season. Mean concentrations were <1. 5 μM during the sampling period in October (0.75 ± 0.02) and December (0.76 ± 0.01), and were relatively constant in both upstream and downstream locations of the flume. Water residence time in the flume (25 m2) was relatively short for any nutrient exchange to occur between the water column and the forest floor. However, the distinct seasonality in nutrient concentrations in the flume and adjacent tidal creek indicate that the Gulf of Mexico is the main source of SRP and N+N into the mangrove forest.