3 resultados para Carbon Bond Activation

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gasoline oxygenates (MTBE, methyl tert-butyl ether; DIPE, di-isopropyl ether; ETBE, ethyl tert-butyl ether; TAME, tert-amyl ether) are added to gasoline to boost octane and enhance combustion. The combination of large scale use, high water solubility and only minor biodegradability has now resulted in a significant gasoline oxygenate contamination occurring in surface, ground, and drinking water systems. Combination of hydroxyl radical formation and the pyrolytic environment generated by ultrasonic irradiation (665 kHz) leads to the rapid degradation of MTBE and other gasoline oxygenates in aqueous media. ^ The presence of oxygen promotes the degradation processes by rapid reaction with carbon centered radicals indicating radical processes involving O 2 are significant pathways. A number of the oxidation products were identified. The formation of products (alcohols, ketones, aldehydes, esters, peroxides, etc) could be rationalized by mechanisms which involve hydrogen abstraction by OH radical and/or pyrolysis to form carboncentered radicals which react with oxygen and follow standard oxidation chain processes. ^ The reactions of N-substituted R-triazolinediones (RTAD; R = CH 3 or phenyl) have attracted considerable interest because they exhibit a number of unusual mechanistic characteristics that are analogous to the reactions of singlet oxygen (1O2) and offer an easy way to provide C-N bond(s) formation. The reactions of triazolinedione with olefins have been widely studied and aziridinium imides are generally accepted to be the reactive intermediates. ^ We observed the rapid formation of an unusual intermediate upon mixing tetracyclopropylethylene with 4-methyl-1,2,4-triazoline-3,5-dione in CDCl 3. Detailed characterization by NMR (proton, 13C, 2-D NMRs) indicates the intermediate is 5,5,6,6-tetracyclopropyl-3-methyl-5,6-dihydro-oxazolo[3,2- b][1,2,4]-triazolium-2-olate. Such products are extremely rare and have not been studied. Upon warming the intermediate is converted to 2 + 2 diazetidine (major) and ene product (minor). ^ To further explore the kinetics and dynamics of the reaction activation energies were obtained using Arrhenius plots. Activation energies for the formation of the intermediate from reactants, and 2+2 adduct from the intermediate were determined as 7.48 kcal moll and 19.8 kcal mol−1 with their pre-exponential values of 2.24 × 105 dm 3 mol−1 sec−1 and 2.75 × 108 sec−1, respectively, meaning net slow reactions because of low pre-exponential values caused by steric hindrance. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diverse biological properties exhibited by uridine analogues modified at carbon-5 of the uracil base have attracted special interest to the development of efficient methodologies for their synthesis. This study aimed to evaluate the possible application of vinyl tris(trimethylsilyl)germanes in the synthesis of conjugated 5-modified uridine analogues via Pd-catalyzed cross-coupling reactions. The stereoselective synthesis of 5-[(2-tris(trimethylsilyl)germyl)ethenyl]uridine derivatives was achieved by the radical-mediated hydrogermylation of the protected 5-alkynyluridine precursors with tris(trimethylsilyl)germane [(TMS)3GeH]. The hydrogermylation with Ph3GeH afforded in addition to the expected 5-vinylgermane, novel 5-(2-triphenylgermyl)acetyl derivatives. Also, the treatment with Me3GeH provided access to 5-vinylgermane uridine analogues with potential biological applications. Since the Pd-catalyzed cross-coupling of organogermanes has received much less attention than the couplings involving organostannanes and organosilanes, we were prompted to develop novel organogermane precursors suitable for transfer of aryl and/or alkenyl groups. The allyl(phenyl)germanes were found to transfer allyl groups to aryl iodides in the presence of sodium hydroxide or tetrabutylammonium fluoride (TBAF) via a Heck arylation mechanism. On the other hand, the treatment of allyl(phenyl)germanes with tetracyanoethylene (TCNE) effectively cleaved the Ge-C(allyl) bonds and promoted the transfer of the phenyl groups upon fluoride activation in toluene. It was discovered that the trichlorophenyl,- dichlorodiphenyl,- and chlorotriphenylgermanes undergo Pd-catalyzed cross-couplings with aryl bromides and iodides in the presence of TBAF in toluene with addition of the measured amount of water. One chloride ligand on the Ge center allows efficient activation by fluoride to promote transfer of one, two or three phenyl groups from the organogermane precursors. The methodology shows that organogermanes can render a coupling efficiency comparable to the more established stannane and silane counterparts. Our coupling methodology (TBAF/moist toluene) was also found to promote the transfer of multiple phenyl groups from analogous chloro(phenyl)silanes and stannanes.