2 resultados para Cache replacement policies

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The deployment of wireless communications coupled with the popularity of portable devices has led to significant research in the area of mobile data caching. Prior research has focused on the development of solutions that allow applications to run in wireless environments using proxy based techniques. Most of these approaches are semantic based and do not provide adequate support for representing the context of a user (i.e., the interpreted human intention.). Although the context may be treated implicitly it is still crucial to data management. In order to address this challenge this dissertation focuses on two characteristics: how to predict (i) the future location of the user and (ii) locations of the fetched data where the queried data item has valid answers. Using this approach, more complete information about the dynamics of an application environment is maintained. ^ The contribution of this dissertation is a novel data caching mechanism for pervasive computing environments that can adapt dynamically to a mobile user's context. In this dissertation, we design and develop a conceptual model and context aware protocols for wireless data caching management. Our replacement policy uses the validity of the data fetched from the server and the neighboring locations to decide which of the cache entries is less likely to be needed in the future, and therefore a good candidate for eviction when cache space is needed. The context aware driven prefetching algorithm exploits the query context to effectively guide the prefetching process. The query context is defined using a mobile user's movement pattern and requested information context. Numerical results and simulations show that the proposed prefetching and replacement policies significantly outperform conventional ones. ^ Anticipated applications of these solutions include biomedical engineering, tele-health, medical information systems and business. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Memory (cache, DRAM, and disk) is in charge of providing data and instructions to a computer's processor. In order to maximize performance, the speeds of the memory and the processor should be equal. However, using memory that always match the speed of the processor is prohibitively expensive. Computer hardware designers have managed to drastically lower the cost of the system with the use of memory caches by sacrificing some performance. A cache is a small piece of fast memory that stores popular data so it can be accessed faster. Modern computers have evolved into a hierarchy of caches, where a memory level is the cache for a larger and slower memory level immediately below it. Thus, by using caches, manufacturers are able to store terabytes of data at the cost of cheapest memory while achieving speeds close to the speed of the fastest one.^ The most important decision about managing a cache is what data to store in it. Failing to make good decisions can lead to performance overheads and over-provisioning. Surprisingly, caches choose data to store based on policies that have not changed in principle for decades. However, computing paradigms have changed radically leading to two noticeably different trends. First, caches are now consolidated across hundreds to even thousands of processes. And second, caching is being employed at new levels of the storage hierarchy due to the availability of high-performance flash-based persistent media. This brings four problems. First, as the workloads sharing a cache increase, it is more likely that they contain duplicated data. Second, consolidation creates contention for caches, and if not managed carefully, it translates to wasted space and sub-optimal performance. Third, as contented caches are shared by more workloads, administrators need to carefully estimate specific per-workload requirements across the entire memory hierarchy in order to meet per-workload performance goals. And finally, current cache write policies are unable to simultaneously provide performance and consistency guarantees for the new levels of the storage hierarchy.^ We addressed these problems by modeling their impact and by proposing solutions for each of them. First, we measured and modeled the amount of duplication at the buffer cache level and contention in real production systems. Second, we created a unified model of workload cache usage under contention to be used by administrators for provisioning, or by process schedulers to decide what processes to run together. Third, we proposed methods for removing cache duplication and to eliminate wasted space because of contention for space. And finally, we proposed a technique to improve the consistency guarantees of write-back caches while preserving their performance benefits.^