4 resultados para Ca2 -activated K Channels

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2â3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials: SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cellsâ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cellsâ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium GreenTM-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results: It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion: These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic heterogeneity, lifestyle factors, gene-gene or gene-environment interactions are the determinants of T2D which puts Hispanics and populations with African ancestry at higher risk of developing T2D. In this dissertation, the genetic associations of PPARGC1A polymorphisms with T2D and its related phenotypes (metabolic markers) in Haitian Americans (cases=110, controls=116), African Americans (cases=120, controls=124) and Cuban Americans (cases=160, controls=181) of South Florida were explored. Five single nucleotide polymorphisms of gene PPARGC1A were evaluated in each ethnicity for their disease association. In Haitian Americans, rs7656250 (OR= 0.22, pp=0.03) had significant protective association with T2D but had risk association in African Americans for rs7656250 (OR=1.02, p=0.96) and rs4235308 (OR=2.53, p=0.03). We found that in Haitian American females, both rs7656250 (OR=0.23, pp=0.03) had protective association with T2D. In African American females, rs7656250 (OR=1.14, p=0.78) had risk association whereas in males, it had significant protective effect (OR=0.37, p=0.04). However, the risk association exhibited by rs4235308 was stronger in African American females (OR=2.69, p=0.03) than males (OR=1.16, p=0.72). In Cuban Americans, only rs7656250 showed significant risk association with T2D (OR=6.87, p=0.02) which was stronger in females alone (OR=7.67, p=0.01). We also observed significant differences among correlations of PPARGC1A SNPs and T2D phenotypes. Positive correlation was observed for log Hs-CRP with rs3774907 (pp=0.03) in Cuban Americans respectively. Correlation of log A1C with rs7656250 (p=0.02) was positive in Cuban Americans while it was negative for rs3774907 in Haitian Americans (ppPPARGC1A correlations with T2D and its phenotypes among the three ethnicities studied (ii) the associations of PPARGC1A SNPs showed significant effect modification by sex. The findings suggest that variations in effects of PPARGC1A gene polymorphisms among three ethnicities and between sexes may have biomedical implications for the development of T2D as well as the phenotypes related to T2D.