4 resultados para CYCLIC VOLTAMMETRY.
em Digital Commons at Florida International University
Resumo:
Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (α-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.
Resumo:
Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.
Resumo:
Free radicals have been implicated in various pathological conditions such as, stroke, aging and ischemic heart disease (IHD), as well as neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s disease. The role of antioxidants in protection from the harmful effects of free radicals has long been recognized. Trapping extremely reactive free radicals and eliminating them from circulation has been shown to be effective in animal models. Nitrone-based free radical traps have been extensively explored in biological systems. Examples include nitrones such as PBN, NXY-059, MDL-101,002, DMPO and EMPO. However, these nitrones have extremely high oxidation potentials as compared to natural antioxidants such as Vitamin E (á-tocopherol), and glutathione. Becker et al. (1995) synthesized novel azulenyl nitrones, which were shown to have oxidation potentials much lower than that of any of the previously reported nitrone based spin traps. Another azulenyl nitrone derivative, stilbazulenyl nitrone (STAZN), was shown to have an even lower oxidation potential within the range of natural antioxidants. STAZN, a second generation free radical trap, was found to be markedly superior than the two most studied nitrones, PBN and NXY-059, in animal models of cerebral ischemia and in an in vitro assay of lipid peroxidation. In this study, a third generation azulenyl nitrone was synthesized with an electron donating group on the previously synthesized STAZN derivative with the aim to lower the oxidation potential even more. Pseudoazulenes, because of the presence of an annular heteroatom, have been reported to possess even lower oxidation potential than that of the azulenyl counterpart. Therefore, pseudoazulenyl nitrones were synthesized for the first time by extracting and elaborating valtrate from the roots of Centranthus ruber (Red valerian or Jupiter’s beard). Several pseudoazulenyl nitrones were synthesized by using a facile experimental protocol. The physical and biological properties of these pseudoazulenyl nitrones can be easily modified by simply changing the substituent on the heteroatom. Cyclic voltammetry experiments have shown that these pseudoazulenyl nitrones do indeed have low oxidation potentials. The oxidation potential of these nitrones was lowered even more by preparing derivatives bearing an electron donating group at the 3-position of the five membered ring of the pseudoazulenyl nitrone.
Resumo:
This dissertation describes the development of a label-free, electrochemical immunosensing platform integrated into a low-cost microfluidic system for the sensitive, selective and accurate detection of cortisol, a steroid hormone co-related with many physiological disorders. Abnormal levels of cortisol is indicative of conditions such as Cushing’s syndrome, Addison’s disease, adrenal insufficiencies and more recently post-traumatic stress disorder (PTSD). Electrochemical detection of immuno-complex formation is utilized for the sensitive detection of Cortisol using Anti-Cortisol antibodies immobilized on sensing electrodes. Electrochemical detection techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have been utilized for the characterization and sensing of the label-free detection of Cortisol. The utilization of nanomaterial’s as the immobilizing matrix for Anti-cortisol antibodies that leads to improved sensor response has been explored. A hybrid nano-composite of Polyanaline-Ag/AgO film has been fabricated onto Au substrate using electrophoretic deposition for the preparation of electrochemical immunosening of cortisol. Using a conventional 3-electrode electrochemical cell, a linear sensing range of 1pM to 1µM at a sensitivity of 66µA/M and detection limit of 0.64pg/mL has been demonstrated for detection of cortisol. Alternately, a self-assembled monolayer (SAM) of dithiobis(succinimidylpropionte) (DTSP) has been fabricated for the modification of sensing electrode to immobilize with Anti-Cortisol antibodies. To increase the sensitivity at lower detection limit and to develop a point-of-care sensing platform, the DTSP-SAM has been fabricated on micromachined interdigitated microelectrodes (µIDE). Detection of cortisol is demonstrated at a sensitivity of 20.7µA/M and detection limit of 10pg/mL for a linear sensing range of 10pM to 200nM using the µIDE’s. A simple, low-cost microfluidic system is designed using low-temperature co-fired ceramics (LTCC) technology for the integration of the electrochemical cortisol immunosensor and automation of the immunoassay. For the first time, the non-specific adsorption of analyte on LTCC has been characterized for microfluidic applications. The design, fabrication technique and fluidic characterization of the immunoassay are presented. The DTSP-SAM based electrochemical immunosensor on µIDE is integrated into the LTCC microfluidic system and cortisol detection is achieved in the microfluidic system in a fully automated assay. The fully automated microfluidic immunosensor hold great promise for accurate, sensitive detection of cortisol in point-of-care applications.