4 resultados para COLD DARK-MATTER
em Digital Commons at Florida International University
Resumo:
It has been proposed that dwarf irregular galaxies can be separated into two classes based on their formation mechanism; that they are the result of the collapse of a primordial gas cloud or that they are the product of condensation of gas in the tidal tails of interacting galaxies. Simulations of galaxy interactions indicate that one can differentiate between these two scenarios by the dark matter content, with a low dark matter content indicating a fossil tidal dwarf. The purpose of this dissertation was to explore the dark matter distribution of two dwarf irregular galaxies using optical and neutral atomic hydrogen data. For DDO 210, the method of mass-modelling was used to determine its dark matter. About 64% of the galaxy mass was calculated to be in the form of dark matter and hence it is unlikely to be a fossil tidal dwarf. The method of mass-modelling could not be used for DDO 169 as the galaxy shows evidence of being tidally disrupted and hence, has a disturbed velocity field. Instead, the suggestion that dark matter might be responsible for a pressure anomaly in DDO 169 was tested to determine its dark matter content. According to this method, a pressure anomaly does exist but without a concrete value for the scale-height, it is unclear whether the anomaly is due to the presence of dark matter. Hence one cannot say how much dark matter might actually be present in DDO 169. A rotation curve would be required to do this. ^
Resumo:
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.
Resumo:
This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.
Resumo:
We investigated the influence of solar radiation on the transfer of organic matter from the particulate to dissolved phase during resuspension of coastal sediments collected from seven sites across Florida Bay (organic carbon values ranged from 2% to 9% by weight). Sediments were resuspended in oligotrophic seawater for 48 h in 1-liter quartz flasks in the dark and under simulated solar radiation (SunTest XLS+) at wet weight concentrations of 100 mg L21 and 1 g L21 (dry weights ranged from 27 to 630 mg L21). There were little to no dissolved organic carbon (DOC) increases in dark resuspensions, but substantial DOC increases occurred in irradiated resuspensions. DOC levels increased 4 mg C L21 in an irradiated 1 g L21 suspension (dry weight 400 mg L21) of an organic-rich (7% organic carbon) sediment. At a particle load commonly found in coastal waters (dry weight 40 mg L21), an irradiated suspension of the same organic-rich sediment produced 1 mg C L21. DOC increases in irradiated resuspensions were well-correlated with particulate organic carbon (POC) added. Photodissolution of POC ranged from 6% to 15% at high sediment levels and 10% to 33% at low sediment levels. Parallel factor analysis modeling of excitation-emission matrix fluorescence data (EEM PARAFAC) suggested the dissolved organic matter (DOM) produced during photodissolution included primarily humic-like components and a less important input of protein-like components. Principal component analysis (PCA) of EEM data revealed a marked similarity in the humic character of photodissolved DOM from organic-rich sediments and the humic character of Florida Bay waters.