6 resultados para COASTLINE
em Digital Commons at Florida International University
Resumo:
We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.
Resumo:
Seagrass meadows are highly productive habitats found along many of the world's coastline, providing important services that support the overall functioning of the coastal zone. The organic carbon that accumulates in seagrass meadows is derived not only from seagrass production but from the trapping of other particles, as the seagrass canopies facilitate sedimentation and reduce resuspension. Here we provide a comprehensive synthesis of the available data to obtain a better understanding of the relative contribution of seagrass and other possible sources of organic matter that accumulate in the sediments of seagrass meadows. The data set includes 219 paired analyses of the carbon isotopic composition of seagrass leaves and sediments from 207 seagrass sites at 88 locations worldwide. Using a three source mixing model and literature values for putative sources, we calculate that the average proportional contribution of seagrass to the surface sediment organic carbon pool is ∼50%. When using the best available estimates of carbon burial rates in seagrass meadows, our data indicate that between 41 and 66 gC m−2 yr−1 originates from seagrass production. Using our global average for allochthonous carbon trapped in seagrass sediments together with a recent estimate of global average net community production, we estimate that carbon burial in seagrass meadows is between 48 and 112 Tg yr−1, showing that seagrass meadows are natural hot spots for carbon sequestration.
Resumo:
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2 = 0.97, r jackknife 2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2 = 0.75, r jackknife 2 = 0.46), WTP (r apparent 2 = 0.75, r jackknife 2 = 0.49), and WTOC (r apparent 2 = 0.79, r jackknife 2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.
Resumo:
World War II profoundly impacted Florida. The military geography of the State is essential to an understanding the war. The geostrategic concerns of place and space determined that Florida would become a statewide military base. Florida's attributes of place such as climate and topography determined its use as a military academy hosting over two million soldiers, nearly 15 percent of the GI Army, the largest force the US ever raised. One-in-eight Floridians went into uniform. Equally, Florida's space on the planet made it central for both defensive and offensive strategies. The Second World War was a war of movement, and Florida was a major jump off point for US force projection world-wide, especially of air power. Florida's demography facilitated its use as a base camp for the assembly and engagement of this military power. In 1940, less than two percent of the US population lived in Florida, a quiet, barely populated backwater of the United States. But owing to its critical place and space, over the next few years it became a 65,000 square mile training ground, supply dump, and embarkation site vital to the US war effort. Because of its place astride some of the most important sea lanes in the Atlantic World, Florida was the scene of one of the few Western Hemisphere battles of the war. The militarization of Florida began long before Pearl Harbor. The pre-war buildup conformed to the US strategy of the war. The strategy of theUS was then (and remains today) one of forward defense: harden the frontier, then take the battle to the enemy, rather than fight them in North America. The policy of "Europe First," focused the main US war effort on the defeat of Hitler's Germany, evaluated to be the most dangerous enemy. In Florida were established the military forces requiring the longest time to develop, and most needed to defeat the Axis. Those were a naval aviation force for sea-borne hostilities, a heavy bombing force for reducing enemy industrial states, and an aerial logistics train for overseas supply of expeditionary campaigns. The unique Florida coastline made possible the seaborne invasion training demanded for US victory. The civilian population was employed assembling mass-produced first-generation container ships, while Floridahosted casualties, Prisoners-of-War, and transient personnel moving between the Atlantic and Pacific. By the end of hostilities and the lifting of Unlimited Emergency, officially on December 31, 1946, Floridahad become a transportation nexus. Florida accommodated a return of demobilized soldiers, a migration of displaced persons, and evolved into a modern veterans' colonia. It was instrumental in fashioning the modern US military, while remaining a center of the active National Defense establishment. Those are the themes of this work.
Resumo:
Tropical Cyclones are a continuing threat to life and property. Willoughby (2012) found that a Pareto (power-law) cumulative distribution fitted to the most damaging 10% of US hurricane seasons fit their impacts well. Here, we find that damage follows a Pareto distribution because the assets at hazard follow a Zipf distribution, which can be thought of as a Pareto distribution with exponent 1. The Z-CAT model is an idealized hurricane catastrophe model that represents a coastline where populated places with Zipf- distributed assets are randomly scattered and damaged by virtual hurricanes with sizes and intensities generated through a Monte-Carlo process. Results produce realistic Pareto exponents. The ability of the Z-CAT model to simulate different climate scenarios allowed testing of sensitivities to Maximum Potential Intensity, landfall rates and building structure vulnerability. The Z-CAT model results demonstrate that a statistical significant difference in damage is found when only changes in the parameters create a doubling of damage.
Resumo:
World War II profoundly impacted Florida. The military geography of the State is essential to an understanding the war. The geostrategic concerns of place and space determined that Florida would become a statewide military base. Florida’s attributes of place such as climate and topography determined its use as a military academy hosting over two million soldiers, nearly 15 percent of the GI Army, the largest force theUS ever raised. One-in-eight Floridians went into uniform. Equally,Florida’s space on the planet made it central for both defensive and offensive strategies. The Second World War was a war of movement, and Florida was a major jump off point forUSforce projection world-wide, especially of air power. Florida’s demography facilitated its use as a base camp for the assembly and engagement of this military power. In 1940, less than two percent of the US population lived in Florida, a quiet, barely populated backwater of the United States.[1] But owing to its critical place and space, over the next few years it became a 65,000 square mile training ground, supply dump, and embarkation site vital to the US war effort. Because of its place astride some of the most important sea lanes in the Atlantic World,Florida was the scene of one of the few Western Hemisphere battles of the war. The militarization ofFloridabegan long before Pearl Harbor. The pre-war buildup conformed to theUSstrategy of the war. The strategy of theUS was then (and remains today) one of forward defense: harden the frontier, then take the battle to the enemy, rather than fight them inNorth America. The policy of “Europe First,” focused the main US war effort on the defeat of Hitler’sGermany, evaluated to be the most dangerous enemy. In Florida were established the military forces requiring the longest time to develop, and most needed to defeat the Axis. Those were a naval aviation force for sea-borne hostilities, a heavy bombing force for reducing enemy industrial states, and an aerial logistics train for overseas supply of expeditionary campaigns. The unique Florida coastline made possible the seaborne invasion training demanded for USvictory. The civilian population was employed assembling mass-produced first-generation container ships, while Floridahosted casualties, Prisoners-of-War, and transient personnel moving between the Atlantic and Pacific. By the end of hostilities and the lifting of Unlimited Emergency, officially on December 31, 1946, Floridahad become a transportation nexus. Florida accommodated a return of demobilized soldiers, a migration of displaced persons, and evolved into a modern veterans’ colonia. It was instrumental in fashioning the modern US military, while remaining a center of the active National Defense establishment. Those are the themes of this work. [1] US Census of Florida 1940. Table 4 – Race, By Nativity and Sex, For the State. 14.