5 resultados para CAPTIVE PSITTACINES
em Digital Commons at Florida International University
Resumo:
Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n = 190) and manatees (n = 56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immunocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included T$\rm\sb{h}$, T$\rm\sb{c/s}$, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating T$\rm\sb{h}$ cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.
Resumo:
Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n=180) and manatees (n=56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immuocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included Th, Tes, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating Th cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.
Resumo:
This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season. ^
Resumo:
The health status of wild and captive Atlantic Bottlenose dolphins ( Tersiops truncatis) is difficult to ascertain. Mass strandings of these animals have been attributed to pollutants, as well as bacterial infections. Using human Enzyme Linked Immuno-Assays (ELISA) for immunological cytokines, I measured soluble cytokine levels with respect to their health status. In a retrospective analysis of dolphin sera, there was a trend of higher cytokine levels in “sick” animals. I cultured dolphin lymphocytes in the presence of a mitogen (PHA), a super antigen (Staph-A), Lipopolysaccharide (LPS), and a calcium flux inducer (PMA). Levels of messenger RNA, from these cultured cells, were assayed with Polymerase Chain Reaction (PCR) using primers for the human cytokines IL-2, IL-4, IL-6, IL-10, Tumor Necrosis Factor, and Interferon gamma. Only IL-4, IL-6, and IL-10 messages were obtained, inferring similar nucleotide homology to the human primer sequences. The PCR products were sequenced. Sixteen IL-4 sequences, twelve IL-6 sequences and seven IL-10 sequences were obtained and analyzed. Each cytokine exhibited the same nucleotide sequence in all dolphins examined. There was no difference in the cytokine profile in response to the various stimuli. The derived amino acid composition for each of the dolphin cytokines was used for molecular modeling, which showed that dolphin IL-4, IL-6, and IL-10 were structurally similar to the corresponding proteins of Perissodactyla. ^
Resumo:
The relationship between reef corals and endosymbiotic dinoflagellates is fundamental to the existence of coral reefs. To evaluate the fidelity of coral-Symbiodinium mutualisms, corals maintained in aquaria for years were analyzed by denaturant gradient gel electrophoresis (DGGE). Comparing Symbiodinium populations of captive aquarium colonies with known associations in nature is a practical way of examining partner flexibility. The finding of "normal" symbiont populations in corals existing under highly variable conditions supports the premise that most coral colonies possess stable associations. High sensitivity real-time PCR (rtPCR) was used to evaluate background populations of the putatively stress-tolerant Symbiodinium D in reef corals of the Caribbean. Analyses of samples collected during periods of environmental stability indicate the ability of Symbiodinium D to associate with a wider diversity of host taxa than previously recognized. To gain a broader perspective with regard to the ecology of Symbiodinium D1a, rtPCR and DGGE were used to evaluate the symbiont populations of reef corals from Barbados before and after the 2005 mass coral bleaching. Background populations were observed in 56% of the host genera prior to observations of bleaching. These findings indicate that 'stress', not 'bleaching', caused the displacement of 'natural' symbiont population and the opportunistic proliferation of D1a in many host taxa. Of the 12 host taxa monitored before and after the bleaching event, there was a 40% increase in colonies hosting Symbiodinium D1a. Together, these studies elucidate the mechanism responsible for recent observations reporting the emergence of Symbiodinium D following thermal disturbances. These observations are now most easily explained as the disproportionate growth of existing in hospite symbiont populations, rather than novel symbiont acquisition subsequent to bleaching. To evaluate the comparative "fitness" of corals able to host multiple symbiont types, rates of calcification were measured in P. verrucosa hosting either Symbiodinium C1b-c or D1 at elevated temperature. Rates of calcification decreased significantly for both host-symbiont combinations, but differences attributable to symbiont composition were not detected. This research improves our knowledge of the symbiosis biology and ecology of reef corals and contributes information necessary to most accurately predict the response of these ecosystems to global climate changes.