9 resultados para Buried plastic pipes
em Digital Commons at Florida International University
Resumo:
The problems of plasticity and non-linear fracture mechanics have been generally recognized as the most difficult problems of solid mechanics. The present dissertation is devoted to some problems on the intersection of both plasticity and non-linear fracture mechanics. The crack tip is responsible for the crack growth and therefore is the focus of fracture science. The problem of crack has been studied by an army of outstanding scholars and engineers in this century, but has not, as yet, been solved for many important practical situations. The aim of this investigation is to provide an analytical solution to the problem of plasticity at the crack tip for elastic-perfectly plastic materials and to apply the solution to a classical problem of the mechanics of composite materials.^ In this work, the stresses inside the plastic region near the crack tip in a composite material made of two different elastic-perfectly plastic materials are studied. The problems of an interface crack, a crack impinging an interface at the right angle and at arbitrary angles are examined. The constituent materials are assumed to obey the Huber-Mises yielding condition criterion. The theory of slip lines for plane strain is utilized. For the particular homogeneous case these problems have two solutions: the continuous solution found earlier by Prandtl and modified by Hill and Sokolovsky, and the discontinuous solution found later by Cherepanov. The same type of solutions were discovered in the inhomogeneous problems of the present study. Some reasons to prefer the discontinuous solution are provided. The method is also applied to the analysis of a contact problem and a push-in/pull-out problem to determine the critical load for plasticity in these classical problems of the mechanics of composite materials.^ The results of this dissertation published in three journal articles (two of which are under revision) will also be presented in the Invited Lecture at the 7$\rm\sp{th}$ International Conference on Plasticity (Cancun, Mexico, January 1999). ^
Resumo:
Aerospace turboengines present a demanding challenge to many heat transfer scientists and engineers. Designers in this field are seeking the best design to transform the chemical energy of the fuel into the useful work of propulsive thrust at maximum efficiency. To this aim, aerospace turboengines must operate at very high temperatures and pressures with very little heat losses. These requirements are often in conflict with the ability to protect the turboengine blades from this hostile thermal environment. Heat pipe technology provides a potential cooling means for the structure exposed to high heat fluxes. Therefore, the objective of this dissertation is to develop a new radially rotating miniature heat pipe, which would combine the traditional air-cooling technology with the heat pipe for more effective turboengine blade cooling. ^ In this dissertation, radially rotating miniature heat pipes are analyzed and studied by employing appropriate flow and heat transfer modeling as well as experimental tests. The analytical solutions for the flows of condensate film and vapor, film thickness, and vapor temperature distribution along the heat pipe length are derived. The diffuse effects of non-condensable gases on the temperature distribution along the heat pipe length are also studied, and the analytical solutions for the temperature distributions with the diffuse effects of non-condensable gases are obtained. Extensive experimental tests on radially rotating miniature heat pipes with different influential parameters are undertaken, and various effects of these parameters on the operation of the heat pipe performance are researched. These analytical solutions are in good agreement with the experimental data. ^ The theoretical and experimental studies have proven that the radially rotating miniature heat pipe has a very large heat transfer capability and a very high effective thermal conductance that is 60–100 times higher than the thermal conductivity of copper. At the same time, the heat pipe has a simple structure and low manufacturing cost, and can withstand strong vibrations and work in a high-temperature environment. Therefore, the combination of the traditional air-cooling technology with the radially rotating miniature heat pipe is a feasible and effective cooling means for high-temperature turbine blades. ^
Resumo:
A novel and new thermal management technology for advanced ceramic microelectronic packages has been developed incorporating miniature heat pipes embedded in the ceramic substrate. The heat pipes use an axially grooved wick structure and water as the working fluid. Prototype substrate/heat pipe systems were fabricated using high temperature co-fired ceramic (alumina). The heat pipes were nominally 81 mm in length, 10 mm in width, and 4 mm in height, and were charged with approximately 50–80 μL of water. Platinum thick film heaters were fabricated on the surface of the substrate to simulate heat dissipating electronic components. Several thermocouples were affixed to the substrate to monitor temperature. One end of the substrate was affixed to a heat sink maintained at constant temperature. The prototypes were tested and shown to successful and reliably operate with thermal loads over 20 Watts, with thermal input from single and multiple sources along the surface of the substrate. Temperature distributions are discussed for the various configurations and the effective thermal resistance of the substrate/heat pipe system is calculated. Finite element analysis was used to support the experimental findings and better understand the sources of the system's thermal resistance. ^
Resumo:
This dissertation analyzes various types of non-canonical texts authorized by women from a wide spectrum of classes and races in the Spanish colonies. The female voice, generally absent from official colonial documents of the sixteenth, seventeenth and eighteen centuries, left a gap in the complex subject of women's history and social participation. Through the study of personal letters, autobiographies, journals, court documents, inquisitorial transcripts, wills and testaments, edicts, orders, proclamations and posters, that voice is recovered. Thus, the Indigenous, Spaniards and African women and their descendants who lived during this period left their written legacy and proof of participation. Beginning with a thorough history of the native woman's interest in writing, this study focuses on how women of all social levels utilized the few means of writing available at their disposal to display a testimonial, critical and sometimes fictional narrative of their surroundings. ^ This investigation concludes that it is necessary to change the traditional image of the passive women of the colonies, subjected to a patriarchal authority and unable to speak or grow on their own. The documents under study, introduced women who were able to self represent themselves as followers of the tradition while at the same time their writings were denying that very same statement. They passed from the private arena to the public one with discourses that confessed their innermost feelings and concerns, challenged the authority of the Inquisitor or the Governor, exposed their sexual freedom and transvestite narratives, successfully developed stratagems that challenged the official ideology of the oppressive religious environment and established their own authority reaching at last the freedom of their souls. ^
Resumo:
Buried time capsule at Biscayne Bay Campus. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
The buried time capsule and plaque. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Resumo:
Buried time capsule with plaque and Biscayne Bay Campus. The Annual FIU Student Leadership Summit is held each February on the Biscayne Bay Campus. The Summit is a one-day conference for current student leaders. The Summit offers our students the opportunity to learn from the vast expertise of our faculty and administrators, to share their leadership experiences with each other and to establish a network of support and cooperation within the university. On Feb. 2, 2013, we celebrated the 10th anniversary of holding the Student Leadership Summit. In honor of this occasion, we buried a time capsule containing materials from the day as well as messages from participants to the participants of 2023 when the time capsule is to be opened.
Tubular and sector heat pipes with interconnected branches for gas turbine and/or compressor cooling
Resumo:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.
Resumo:
A novel and new thermal management technology for advanced ceramic microelectronic packages has been developed incorporating miniature heat pipes embedded in the ceramic substrate. The heat pipes use an axially grooved wick structure and water as the working fluid. Prototype substrate/heat pipe systems were fabricated using high temperature co-fired ceramic (alumina). The heat pipes were nominally 81 mm in length, 10 mm in width, and 4 mm in height, and were charged with approximately 50-80 mL of water. Platinum thick film heaters were fabricated on the surface of the substrate to simulate heat dissipating electronic components. Several thermocouples were affixed to the substrate to monitor temperature. One end of the substrate was affixed to a heat sink maintained at constant temperature. The prototypes were tested and shown to successful and reliably operate with thermal loads over 20 Watts, with thermal input from single and multiple sources along the surface of the substrate. Temperature distributions are discussed for the various configurations and the effective thermal resistance of the substrate/heat pipe system is calculated. Finite element analysis was used to support the experimental findings and better understand the sources of the system's thermal resistance.