4 resultados para Bridge construction industry

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the U.S., construction accidents remain a significant economic and social problem. Despite recent improvement, the Construction industry, generally, has lagged behind other industries in implementing safety as a total management process for achieving zero accidents and developing a high-performance safety culture. One aspect of this total approach to safety that has frustrated the construction industry the most has been “measurement”, which involves identifying and quantifying the factors that critically influence safe work behaviors. The basic problem attributed is the difficulty in assessing what to measure and how to measure it—particularly the intangible aspects of safety. Without measurement, the notion of continuous improvement is hard to follow. This research was undertaken to develop a strategic framework for the measurement and continuous improvement of total safety in order to achieve and sustain the goal of zero accidents, while improving the quality, productivity and the competitiveness of the construction industry as it moves forward. The research based itself on an integral model of total safety that allowed decomposition of safety into interior and exterior characteristics using a multiattribute analysis technique. Statistical relationships between total safety dimensions and safety performance (measured by safe work behavior) were revealed through a series of latent variables (factors) that describe the total safety environment of a construction organization. A structural equation model (SEM) was estimated for the latent variables to quantify relationships among them and between these total safety determinants and safety performance of a construction organization. The developed SEM constituted a strategic framework for identifying, measuring, and continuously improving safety as a total concern for achieving and sustaining the goal of zero accidents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980’s. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) - Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The outcome of this research is an Intelligent Retrieval System for Conditions of Contract Documents. The objective of the research is to improve the method of retrieving data from a computer version of a construction Conditions of Contract document. SmartDoc, a prototype computer system has been developed for this purpose. The system provides recommendations to aid the user in the process of retrieving clauses from the construction Conditions of Contract document. The prototype system integrates two computer technologies: hypermedia and expert systems. Hypermedia is utilized to provide a dynamic way for retrieving data from the document. Expert systems technology is utilized to build a set of rules that activate the recommendations to aid the user during the process of retrieval of clauses. The rules are based on experts knowledge. The prototype system helps the user retrieve related clauses that are not explicitly cross-referenced but, according to expert experience, are relevant to the topic that the user is interested in.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.