2 resultados para Body measurements

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insect biodiversity is unevenly distributed on local, regional, and global scales. Elevation is a key factor in the uneven distribution of insect diversity, serving as a proxy for a host of environmental variables. My study examines the relationship of Heteroptera (true bugs) species diversity, abundance, and morphology to elevational gradients and land-use regimes on Mt. Kilimanjaro, Tanzania, East Africa. Heteroptera specimens were collected from 60 research sites covering an elevational range of 3684m (866-4550m above sea level). Thirty of the sites were classified as natural, while the remaining 30 were classified as disturbed (e.g., agricultural use or converted to grasslands). I measured aspects of the body size of adult specimens and recorded their location of origin. I used regression models to analyze the relationships of Heteroptera species richness, abundance, and body measurements to elevation and land-use regime. Richness and abundance declined with greater elevation, controlling for land use. The declines were linear or logarithmic in form, depending on the model. Richness and abundance were greater in natural than disturbed sites, controlling for elevation. According to an interaction, richness decreased more in natural than disturbed sites with rising elevation. Body length increased as a quadratic function of elevation, adjusting for land use. Body width X length decreased as a logarithmic function of elevation, while leg length/body length decreased as a quadratic function. Leg length/body length was greater in disturbed than natural sites. Interactions indicated that body length and body width X length were greater in natural than disturbed sites as elevation rose, although the general trend was downward. Future research should examine the relative importance of land area, temperature, and resource constraints for Heteroptera diversity and morphology on Mt. Kilimanjaro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this investigation was to develop new techniques to generate segmental assessments of body composition based on Segmental Bioelectrical Impedance Analysis (SBIA). An equally important consideration was the design, simulation, development, and the software and hardware integration of the SBIA system. This integration was carried out with a Very Large Scale Integration (VLSI) Field Programmable Gate Array (FPGA) microcontroller that analyzed the measurements obtained from segments of the body, and provided full body and segmental Fat Free Mass (FFM) and Fat Mass (FM) percentages. Also, the issues related to the estimate of the body's composition in persons with spinal cord injury (SCI) were addressed and investigated. This investigation demonstrated that the SBIA methodology provided accurate segmental body composition measurements. Disabled individuals are expected to benefit from these SBIA evaluations, as they are non-invasive methods, suitable for paralyzed individuals. The SBIA VLSI system may replace bulky, non flexible electronic modules attached to human bodies. ^