3 resultados para Black shales

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a δ13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the δ 13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. ^ The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. ^ The results indicate that the lowest 85 m of the section, from latest Barremian -earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. ^ The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in δ13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution lithostratigraphic data from rock sequences known as the Indidura Formation near Parras de La Fuente, Coahuila, NE Mexico, led to achieve a significant improvement of our knowledge of that Formation. The results of this study indicate for the first time that the sequence at Parras de La Fuente developed from the deposition of calcareous cyanobacterial microspheroids that accumulated under perennial blooms during the Late Cenomanian through the Middle Turonian. Multi-proxy analyses included sedimentological, petrographical, scanning electron microscopy, stable isotope, trace element geochemistry, and paleontological data. The combined results allowed the correlation of δ13C and anomalies in Mo, V, and Cr with the abundance and predominance of calcareous cyanobacterial microspheroids, which were the main suppliers of the carbonate components and the organic matter throughout deposition of the Indidura Formation in the Parras de la Fuente area, under dysoxic/anoxic conditions. Conspicuous interbeds of dark and light-gray laminated marly calcilutites, and dark-gray marlstones that characterize the stratigraphic sequence formed in response to external forcing climatic factors of millennial-scale Milankovitch cycles (ca. 20 ka precession). At the microscopic level, the prominent dark and light-gray laminae were formed during cycles similar to the 10 to 15 years solar irradiance maximum, and represent alternating periods of high and low calcareous cyanobacterial microspheroids productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hallmark of oceanic anoxic event 1a (OAE1a) (early Aptian ~125 Ma) corresponds to worldwide deposition of black shales with total organic carbon (TOC) content > 2% and a d13C positive excursion up to ~5‰. OAE1a has been related to large igneous province volcanism and dissociation of methane hydrates during the Lower Cretaceous. However, the occurrence of atypical, coeval and diachronous organic-rich deposits associated with OAE1a, which are also characterized by positive spikes of the d13C in epicontinental to restricted marine environments of the Tethys Ocean, indicates localized responses decoupled from complex global forcing factors. The present research is a high-resolution, multiproxy approach to assess the paleoenvironmental conditions that led to enhanced carbon sequestration from the late Barremian to the middle Aptian in a restricted, Tethyan marginal basin prior to and during OAE1a. I studied the lower 240 m of the El Pui section, Organyà Basin, Spanish Pyrenees. The basin developed as the result of extensional tectonism linked to the opening of the Atlantic Ocean. At the field scale the section consists of a sequence of alternating beds of cm – m-scale, medium-gray to grayish-black limestones and marlstones with TOC up to ~4%. The results indicate that the lowest 85 m of the section, from latest Barremian –earliest Aptian, characterize a deepening phase of the basin concomitant with sustained riverine flux and intensified primary productivity. These changes induced a shift in the sedimentation pattern and decreased the oxygen levels in the water column through organic matter respiration and limited ventilation of the basin. The upper 155 m comprising the earliest – late-early Aptian document the occurrence of OAE1a and its associated geochemical signatures (TOC up to 3% and a positive shift in d13C of ~5‰). However, a low enrichment of redox-sensitive trace elements indicates that the basin did not achieve anoxic conditions. The results also suggest that a shallower-phase of the basin, coeval with platform progradation, may have increased ventilation of the basin at the same time that heightened sedimentation rates and additional input of organic matter from terrestrial sources increased the burial and preservation rate of TOC in the sediment.