79 resultados para Biscayne aquifer

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrodynamic threshold between Darcian and non-Darcian flow conditions was found to occur in cubes of Key Largo Limestone from Florida, USA (one cube measuring 0.2 m on each side, the other 0.3 m) at an effective porosity of 33% and a hydraulic conductivity of 10 m/day. Below these values, flow was laminar and could be described as Darcian. Above these values, hydraulic conductivity increased greatly and flow was non-laminar. Reynolds numbers (Re) for these experiments ranged from

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous and reliable monitoring of contaminants in drinking water, which adversely affect human health, is the main goal of the Broward County Well Field Protection Program. In this study the individual monitoring station locations were used in a yearly and quarterly spatiotemporal Ordinary Kriging interpolation to create a raster network of contaminant detections. In the final analysis, the raster spatiotemporal nitrate concentration trends were overlaid with a pollution vulnerability index to determine if the concentrations are influenced by a set of independent variables. The pollution vulnerability factors are depth to water, recharge, aquifer media, soil, impact to vadose zone, and conductivity. The creation of the nitrate raster dataset had an average RMS Standardized error close to 1 at 0.98. The greatest frequency of detections and the highest concentrations are found in the months of April, May, June, July, August, and September. An average of 76.4% of the nitrate intersected with cells of the pollution vulnerability index over 100.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concentrations of tritium (3H) and helium isotopes (3He and4He) were used as tracers of groundwater flow in the surficial aquifer system (SAS) beneath Everglades National Park (ENP), south Florida. From ages determined by 3H/3He dating techniques, groundwater within the upper 28 m originated within the last 30 years. Below 28 m, waters originated prior to 30 years before present with evidence of mixing at the interface. Interannual variation of the 3H/3He ages within the upper 28 m was significant throughout the 3 year investigation, corresponding with varying hydrologic conditions. In the region of Taylor Slough Bridge, younger groundwater was consistently detected below older groundwater in the Biscayne Aquifer, suggesting preferential flow to the lower part of the aquifer. An increase in 4He with depth in the SAS indicated that radiogenic 4He produced in the underlying Hawthorn Group migrates into the SAS by diffusion. Higher Δ4He values in brackish groundwaters compared to fresh waters from similar depths suggested a possible enhanced vertical transport of4He in the seawater mixing zone. Groundwater salinity measurements indicated the presence of a wide (6–28 km) seawater mixing zone. Comparison of groundwater levels with surface water levels in this zone indicated the potential for brackish groundwater discharge to the overlying Everglades surface water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A LLE-GC-MS method was developed to detect PPCPs in surface water samples from Big Cypress National Park, Everglades National Park and Biscayne National Park in South Florida. The most frequently found PPCPs were caffeine, DEET and triclosan with detected maximum concentration of 169 ng/L, 27.9 ng/L and 10.9 ng/L, respectively. The detection frequencies of hormones were less than PPCPs. Detected maximal concentrations of estrone, 17β-estradiol, coprostan-3-ol, coprostane and coprostan-3-one were 5.98 ng/L, 3.34 ng/L, 16.5 ng/L, 13.5 ng/L and 6.79 ng/L, respectively. An ASE-SPE-GC-MS method was developed and applied to the analysis of the sediment and soil area where reclaimed water was used for irrigation. Most analytes were below detection limits, even though some of analytes were detected in the reclaimed water at relatively high concentrations corroborating the fact that PPCPs do not significantly partition to mineral phases. An online SPE-HPLC-APPI-MS/MS method and an online SPE-HPLC-HESI-MS/MS method were developed to analyze reclaimed water and drinking water samples. In the reclaimed water study, reclaimed water samples were collected from the sprinkler for a year-long period at Florida International University Biscayne Bay Campus, where reclaimed water was reused for irrigation. Analysis results showed that several analytes were continuously detected in all reclaimed water samples. Coprostanol, bisphenol A and DEET's maximum concentration exceeded 10 μg/L (ppb). The four most frequently detected compounds were diphenhydramine (100%), DEET (98%), atenolol (98%) and carbamazepine (96%). In the study of drinking water, 54 tap water samples were collected from the Miami-Dade area. The maximum concentrations of salicylic acid, ibuprofen and DEET were 521 ng/L, 301 ng/L and 290 ng/L, respectively. The three most frequently detected compounds were DEET (93%), carbamazepine (43%) and salicylic acid (37%), respectively. Because the source of drinking water in Miami-Dade County is the relatively pristine Biscayne aquifer, these findings suggest the presence of wastewater intrusions into the delivery system or the onset of direct influence of surface waters into the shallow aquifer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A combination of statistical and interpolation methods and Geographic Information System (GIS) spatial analysis was used to evaluate the spatial and temporal changes in groundwater Cl− concentrations in Collier and Lee Counties (southwestern Florida), and Miami-Dade and Broward Counties (southeastern Florida), since 1985. In southwestern Florida, the average Cl− concentrations in the shallow wells (0–43 m) in Collier and Lee Counties increased from 132 mg L−1 in 1985 to 230 mg L−1 in 2000. The average Cl− concentrations in the deep wells (>43 m) of southwestern Florida increased from 392 mg L−1 in 1985 to 447 mg L−1 in 2000. Results also indicated a positive correlation between the mean sea level and Cl− concentrations and between the mean sea level and groundwater levels for the shallow wells. Concentrations in the Biscayne Aquifer (southeastern Florida) were significantly higher than those of southwestern Florida. The average Cl− concentrations increased from 159 mg L−1 in 1985 to 470 mg L−1 in 2010 for the shallow wells (<33 m) and from 1360 mg L−1 in 1985 to 2050 mg L−1 in 2010 for the deep wells (>33 m). In the Biscayne Aquifer, wells showed a positive or negative correlation between mean sea level and Cl− concentrations according to their location with respect to the saltwater intrusion line. Wells located inland behind canal control structures and west of the saltwater intrusion line showed negative correlation values, whereas wells located east of the saltwater intrusion line showed positive values. Overall, the results indicated that since 1985, there was a potential decline in the available freshwater resources estimated at about 12–17% of the available drinking-quality groundwater of the southeastern study area located in the Biscayne Aquifer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research was conducted to study the use of radiation in water treatment as an alternative to chlorination which has caused health concerns due to the formation of harmful disinfection by-products. Groundwater solutions from the Biscayne aquifer were radiated with Cobalt-60 gamma radiation and studied for changes in dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), fluorescence and trihalomethane formation potential (THMFP). Molecular fractionations were conducted by ultrafiltration. Effect of the combination of radiation/peroxide was studied for DOC and UV254. Radiation showed significant removal in DOC and THMFP. Similar results were seen in the fluorescence and UV absorbance experiments. Radiation/peroxide did not improve the DOC removal. Radiation of the groundwater samples broke the larger molecular weight fractions in to smaller fractions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pleistocene carbonate rock Biscayne Aquifer of south Florida contains laterally-extensive bioturbated ooltic zones characterized by interconnected touching-vug megapores that channelize most flow and make the aquifer extremely permeable. Standard petrophysical laboratory techniques may not be capable of accurately measuring such high permeabilities. Instead, innovative procedures that can measure high permeabilities were applied. These fragile rocks cannot easily be cored or cut to shapes convenient for conducting permeability measurements. For the laboratory measurement, a 3D epoxy-resin printed rock core was produced from computed tomography data obtained from an outcrop sample. Permeability measurements were conducted using a viscous fluid to permit easily observable head gradients (~2 cm over 1 m) simultaneously with low Reynolds number flow. For a second permeability measurement, Lattice Boltzmann Method flow simulations were computed on the 3D core renderings. Agreement between the two estimates indicates an accurate permeability was obtained that can be applied to future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial and temporal distribution of modern diatom assemblages in surface sediments, on the most dominant macrophytes, and in the water column at 96 locations in Florida Bay, Biscayne Bay and adjacent regions were examined in order to develop paleoenvironmental prediction models for this region. Analyses of these distributions revealed distinct temporal and spatial differences in assemblages among the locations. The differences among diatom assemblages living on subaquatic vegetation and sediments, and in the water column were significant. Because concentrations of salts, total phosphorus (WTP), total nitrogen (WTN) and total organic carbon (WTOC) are partly controlled by water management in this region, diatom-based models were produced to assess these variables. Discriminant function analyses showed that diatoms can also be successfully used to reconstruct changes in the abundance of diatom assemblages typical for different habitats and life habits. ^ To interpret paleoenvironmental changes, changes in salinity, WTN, WTP and WTOC were inferred from diatoms preserved in sediment cores collected along environmental gradients in Florida Bay (4 cores) and from nearshore and offshore locations in Biscayne Bay (3 cores). The reconstructions showed that water quality conditions in these estuaries have been fluctuating for thousands of years due to natural processes and sea-level changes, but almost synchronized shifts in diatom assemblages occurred in the mid-1960’s at all coring locations (except Ninemile Bank and Bob Allen Bank in Florida Bay). These alterations correspond to the major construction of numerous water management structures on the mainland. Additionally, all the coring sites (except Card Sound Bank, Biscayne Bay and Trout Cove, Florida Bay) showed decreasing salinity and fluctuations in nutrient levels in the last two decades that correspond to increased rainfall in the 1990’s and increased freshwater discharge to the bays, a result of increased freshwater deliveries to the Everglades by South Florida Water Management District in the 1980’s and 1990’s. Reconstructions of the abundance of diatom assemblages typical for different habitats and life habits revealed multiple sources of diatoms to the coring locations and that epiphytic assemblages in both bays increased in abundance since the early 1990’s. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep well injection into non-potable saline aquifers of treated domestic wastewater has been used in Florida for decades as a safe and effective alternative to ocean outfall disposal. The objectives of this study were to determine the fate and transport of injected wastewater at two deep well injection sites in Miami Dade County, Florida, USA. Detection of ammonium in the Middle Confining units of the Floridan aquifer above the injection zone at both sites has been interpreted as evidence of upward migration of injected wastewater, posing a risk to underground sources of drinking water. Historical water quality data, including ammonia, chloride, temperature, and pH from existing monitoring wells at both sites from 1983 to 2008, major ions collected monthly from 2006 and 2008, and a synoptic sampling event for stable isotopes, tritium, and dissolved gases in 2008, were used to determine the source of ammonium in groundwater and possible migration pathways. Geochemical modeling was used to determine possible effects of injected wastewater on native water and aquifer matrix geochemistry. Injected wastewater was determined to be the source of elevated ammonium concentrations above ambient water levels, based on the results of major ion concentrations, tritium, dissolved noble gases and 15N isotopes analyses. Various possible fluid migration pathways were identified at the sites. Data for the south site suggest buoyancy-driven vertical pathways to overlying aquifers bypassing the confining units, with little mixing of injected wastewater with native water as it migrated upward. Once it is introduced into an aquifer, the injectate appeared to migrate advectively with the regional groundwater flow. Geochemical modeling indicated that CO 2-enriched injected wastewater allowed for carbonate dissolution along the vertical pathways, enhancing permeability along these flowpaths. At the north site, diffusive upward flow through the confining units or offsite vertical pathways were determined to be possible, however no evidence was detected for any on-site confining unit bypass pathway. No evidence was observed at either site of injected wastewater migration to the Upper Floridan aquifer, which is used as a municipal water supply and for aquifer storage and recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD  = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two deep-well injection sites in south Florida, USA, inject an average of 430 million liters per day (MLD) of treated domestic fresh wastewater into a deep saline aquifer 900 m below land surface. Elevated levels of NH3 (highest concentration 939 µmol) in the overlying aquifer above ambient concentrations (concentration less than 30 µmol) were evidence of the upward migration of injected fluids. Three pathways were distinguished based on ammonium, chloride and bromide ratios, and temperature. At the South District Wastewater Treatment Plant, the tracer ratios showed that the injectate remained chemically distinct as it migrated upwards through rapid vertical pathways via density-driven buoyancy. The warmer injectate (mean 28°C) retained the temperature signal as it vertically migrated upwards; however, the temperature signal did not persist as the injectate moved horizontally into the overlying aquifers. Once introduced, the injectate moved slowly horizontally through the aquifer and mixed with ambient water. At the North District Wastewater Treatment Plant, data provide strong evidence of a one-time pulse of injectate into the overlying aquifers due to improper well construction. No evidence of rapid vertical pathways was observed at the North District Wastewater Treatment Plant.