3 resultados para Biopolymeric carbon flux
em Digital Commons at Florida International University
Resumo:
Arctic soils store close to 14% of the global soil carbon. Most of arctic carbon is stored below ground in the permafrost. With climate warming the decomposition of the soil carbon could represent a significant positive feedback to global greenhouse warming. Recent evidence has shown that the temperature of the Arctic is already increasing, and this change is associated mostly with anthropogenic activities. Warmer soils will contribute to permafrost degradation and accelerate organic matter decay and thus increase the flux of carbon dioxide and methane into the atmosphere. Temperature and water availability are also important drivers of ecosystem performance, but effects can be complex and in opposition. Temperature and moisture changes can affect ecosystem respiration (ER) and gross primary productivity (GPP) independently; an increase in the net ecosystem exchange can be a result of either a decrease in ER or an increase in GPP. Therefore, understanding the effects of changes in ecosystem water and temperature on the carbon flux components becomes key to predicting the responses of the Arctic to climate change. The overall goal of this work was to determine the response of arctic systems to simulated climate change scenarios with simultaneous changes in temperature and moisture. A temperature and hydrological manipulation in a naturally-drained lakebed was used to assess the short-term effect of changes in water and temperature on the carbon cycle. Also, as part of International Tundra Experiment Network (ITEX), I determined the long-term effect of warming on the carbon cycle in a natural hydrological gradient established in the mid 90's. I found that the carbon balance is highly sensitive to short-term changes in water table and warming. However, over longer time periods, hydrological and temperature changed soil biophysical properties, nutrient cycles, and other ecosystem structural and functional components that down regulated GPP and ER, especially in wet areas.
Resumo:
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27 × 109 mg C d−1 and 0.075 × 109 mg C d−1, respectively, and the Harney River is estimated as 1.9 × 109 mg C d−1 and 0.20 × 109 mg C d−1.
Resumo:
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.