2 resultados para Biomarkers, Tumor -- blood
em Digital Commons at Florida International University
Resumo:
There is limited scientific knowledge on the composition of human odor from different biological specimens and the effect that physiological and psychological health conditions could have on them. There is currently no direct comparison of the volatile organic compounds (VOCs) emanating from different biological specimens collected from healthy individuals as well as individuals with certain diagnosed medical conditions. Therefore the question of matching VOCs present in human odor across various biological samples and across health statuses remains unanswered. The main purpose of this study was to use analytical instrumental methods to compare the VOCs from different biological specimens from the same individual and to compare the populations evaluated in this project. The goals of this study were to utilize headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC/MS) to evaluate its potential for profiling VOCs from specimens collected using standard forensic and medical methods over three different populations: healthy group with no diagnosed medical or psychological condition, one group with diagnosed type 2 diabetes, and one group with diagnosed major depressive disorder. The pre-treatment methods of collection materials developed for the study allowed for the removal of targeted VOCs from the sampling kits prior to sampling, extraction and analysis. Optimized SPME-GC/MS conditions has been demonstrated to be capable of sampling, identifying and differentiating the VOCs present in the five biological specimens collected from different subjects and yielded excellent detection limits for the VOCs from buccal swab, breath, blood, and urine with average limits of detection of 8.3 ng. Visual, Spearman rank correlation, and PCA comparisons of the most abundant and frequent VOCs from each specimen demonstrated that each specimen has characteristic VOCs that allow them to be differentiated for both healthy and diseased individuals. Preliminary comparisons of VOC profiles of healthy individuals, patients with type 2 diabetes, and patients with major depressive disorder revealed compounds that could be used as potential biomarkers to differentiate between healthy and diseased individuals. Finally, a human biological specimen compound database has been created compiling the volatile compounds present in the emanations of human hand odor, oral fluids, breath, blood, and urine.
Resumo:
Three-Dimensional (3-D) imaging is vital in computer-assisted surgical planning including minimal invasive surgery, targeted drug delivery, and tumor resection. Selective Internal Radiation Therapy (SIRT) is a liver directed radiation therapy for the treatment of liver cancer. Accurate calculation of anatomical liver and tumor volumes are essential for the determination of the tumor to normal liver ratio and for the calculation of the dose of Y-90 microspheres that will result in high concentration of the radiation in the tumor region as compared to nearby healthy tissue. Present manual techniques for segmentation of the liver from Computed Tomography (CT) tend to be tedious and greatly dependent on the skill of the technician/doctor performing the task. ^ This dissertation presents the development and implementation of a fully integrated algorithm for 3-D liver and tumor segmentation from tri-phase CT that yield highly accurate estimations of the respective volumes of the liver and tumor(s). The algorithm as designed requires minimal human intervention without compromising the accuracy of the segmentation results. Embedded within this algorithm is an effective method for extracting blood vessels that feed the tumor(s) in order to plan effectively the appropriate treatment. ^ Segmentation of the liver led to an accuracy in excess of 95% in estimating liver volumes in 20 datasets in comparison to the manual gold standard volumes. In a similar comparison, tumor segmentation exhibited an accuracy of 86% in estimating tumor(s) volume(s). Qualitative results of the blood vessel segmentation algorithm demonstrated the effectiveness of the algorithm in extracting and rendering the vasculature structure of the liver. Results of the parallel computing process, using a single workstation, showed a 78% gain. Also, statistical analysis carried out to determine if the manual initialization has any impact on the accuracy showed user initialization independence in the results. ^ The dissertation thus provides a complete 3-D solution towards liver cancer treatment planning with the opportunity to extract, visualize and quantify the needed statistics for liver cancer treatment. Since SIRT requires highly accurate calculation of the liver and tumor volumes, this new method provides an effective and computationally efficient process required of such challenging clinical requirements.^