14 resultados para Biology, Ecology|Biology, Zoology|Environmental Sciences
em Digital Commons at Florida International University
Resumo:
This study investigated how harvest and water management affected the ecology of the Pig Frog, Rana grylio. It also examined how mercury levels in leg muscle tissue vary spatially across the Everglades. Rana grylio is an intermediate link in the Everglades food web. Although common, this inconspicuous species can be affected by three forms of anthropogenic disturbance: harvest, water management and mercury contamination. This frog is harvested both commercially and recreationally for its legs, is aquatic and thus may be susceptible to water management practices, and can transfer mercury throughout the Everglades food web. ^ This two-year study took place in three major regions: Everglades National Park (ENP), Water Conservation Areas 3A (A), and Water Conservation Area 3B (B). The study categorized the three sites by their relative harvest level and hydroperiod. During the spring of 2001, areas of the Everglades dried completely. On a regional and local scale Pig Frog abundance was highest in Site A, the longest hydroperiod, heavily harvested site, followed by ENP and B. More frogs were found along survey transects and in capture-recapture plots before the dry-down than after the dry-down in Sites ENP and B. Individual growth patterns were similar across all sites, suggesting differences in body size may be due to selective harvest. Frogs from Site A, the flooded and harvested site, had no differences in survival rates between adults and juveniles. Site B populations shifted from a juvenile to adult dominated population after the dry-down. Dry-downs appeared to affect survival rates more than harvest. ^ Total mercury in frog leg tissue was highest in protected areas of Everglades National Park with a maximum concentration of 2.3 mg/kg wet mass where harvesting is prohibited. Similar spatial patterns in mercury levels were found among pig frogs and other wildlife throughout parts of the Everglades. Pig Frogs may be transferring substantial levels of mercury to other wildlife species in ENP. ^ In summary, although it was found that abundance and survival were reduced by dry-down, lack of adult size classes in Site A, suggest harvest also plays a role in regulating population structure. ^
Resumo:
The balance between the costs and benefits of conspicuous signals ensures that the expression of those signals is related to the quality of the bearer. Plastic signals could enable males to maximize conspicuous traits to impress mates and competitors, but reduce the expression of those traits to minimize signaling costs, potentially compromising the information conveyed by the signals. ^ I investigated the effect of signal enhancement on the information coded by the biphasic electric signal pulse of the gymnotiform fish Brachyhypopomus gauderio. Increases in population density drive males to enhance the amplitude of their signals. I found that signal amplitude enhancement improves the information about the signaler's size. Furthermore, I found that the elongation of the signal's second phase conveys information about androgen levels in both sexes, gonad size in males and estrogen levels in females. Androgens link the duration of the signal's second phase to other androgen-mediated traits making the signal an honest indicator of reproductive state and aggressive motivation. ^ Signal amplitude enhancement facilitates the assessment of the signaler's resource holding potential, important for male-male interactions, while signal duration provides information about aggressive motivation to same-sex competitors and reproductive state to the opposite sex. Moreover, I found that female signals also change in accordance to the social environment. Females also increase the amplitude of their signal when population density increases and elongate the duration of their signal's second phase when the sex ratio becomes female-biased. Indicating that some degree of sexual selection operates in females. ^ I studied whether male B. gauderio use signal plasticity to reduce the cost of reproductive signaling when energy is limited. Surprisingly, I found that food limitation promotes the investment in reproduction manifested as signal enhancement and elevated androgen levels. The short lifespan and single breeding season of B. gauderio diminishes the advantage of energy savings and gives priority to sustaining reproduction. I conclude that the electric signal of B. gauderio provides reliable information about the signaler, the quality of this information is reinforced rather than degraded with signal enhancement.^
Resumo:
The eggs of the dengue fever vector Aedes aegypti possess the ability to undergo an extended quiescence period hosting a fully developed first instar larvae within its chorion. As a result of this life history stage, pharate larvae can withstand months of dormancy inside the egg where they depend on stored reserves of maternal origin. This adaptation known as pharate first instar quiescence, allows A. aegypti to cope with fluctuations in water availability. An examination of this fundamental adaptation has shown that there are trade-offs associated with it. ^ Aedes aegypti mosquitoes are frequently associated with urban habitats that may contain metal pollution. My research has demonstrated that the duration of this quiescence and the extent of nutritional depletion associated with it affects the physiology and survival of larvae that hatch in a suboptimal habitat; nutrient reserves decrease during pharate first instar quiescence and alter subsequent larval and adult fitness. The duration of quiescence compromises metal tolerance physiology and is coupled to a decrease in metallothionein mRNA levels. My findings also indicate that even low levels of environmentally relevant larval metal stress alter the parameters that determine vector capacity. ^ My research has also demonstrated that extended pharate first instar quiescence can elicit a plastic response resulting in an adult phenotype distinct from adults reared from short quiescence eggs. Extended pharate first instar quiescence affects the performance and reproductive fitness of the adult female mosquito as well as the nutritional status of its progeny via maternal effects in an adaptive manner, i.e., anticipatory phenotypic plasticity results as a consequence of the duration of pharate first instar quiescence and alternative phenotypes may exist for this mosquito with quiescence serving as a cue possibly signaling the environmental conditions that follow a dry period. M findings may explain, in part, A. aegypti's success as a vector and its geographic distribution and have implications for its vector capacity and control.^
Resumo:
Water management has altered both the natural timing and volume of freshwater delivered to Everglades National Park. This is especially true for Taylor Slough and the C-111 basin, as hypersaline events in Florida Bay have been linked to reduced freshwater flow in this area. In light of recent efforts to restore historical flows to the eastern Everglades, an understanding of the impact of this hydrologic shift is needed in order to predict the trajectory of restoration. I conducted a study to assess the importance of season, water chemistry, and hydrologic conditions on the exchange of nutrients in dwarf and fringe mangrove wetlands along Taylor Slough. I also performed mangrove leaf decomposition studies to determine the contribution of biotic and abiotic processes to mass loss, the effect of salinity and season on degradation rates, and the importance of this litter component as a rapid source of nutrients. ^ Dwarf mangrove wetlands consistently imported total nutrients (C, N, and P) and released NO2− +NO3 −, with enhanced release during the dry season. Ammonium flux shifted from uptake to release over the study period. Dissolved phosphate activity was difficult to discern in either wetland, as concentrations were often below detection limits. Fluxes of dissolved inorganic nitrogen in the fringe wetland were positively related to DIN concentrations. The opposite was found for total nitrogen in the fringe wetland. A dynamic budget revealed a net annual export of TN to Florida Bay that was highest during the wet season. Simulated increases and decreases in freshwater flow yielded reduced exports of TN to Florida Bay as a result of changes in subsystem and water flux characteristics. Finally, abiotic processes yielded substantial nutrient and mass losses from senesced leaves with little influence of salinity. Dwarf mangrove leaf litter appeared to be a considerable source of nutrients to the water column of this highly oligotrophic wetland. To summarize, nutrient dynamics at the subsystem level were sensitive to short-term changes in hydrologic and seasonal conditions. These findings suggest that increased freshwater flow has the potential to lead to long-term, system-level changes that may reach as far as eastern Florida Bay. ^
Resumo:
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in a complex wetland landscape. I investigated the effects of increased freshwater flow in southern Everglades seasonally flooded tree islands, and characterized biogeochemical interactions among tree islands and the marsh landscape matrix, specifically examining hydrologic flows of nitrogen (N), and landscape N sequestration capacity. I utilized ecological trajectories of key ecosystem variables to differentiate effects of increased sheetflow and hydroperiod. I utilized stable isotope analyses and nutrient content of tree island ecosystem components to test the hypothesis that key processes in tree island nitrogen cycling would favor ecosystem N sequestration. I combined estimates of tree island ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic inputs of N to quantify the net sequestration of N by a seasonally flooded tree island. ^ Results show that increased freshwater flow to seasonally flooded tree islands promoted ecosystem oligotrophy, whereas reduced flows allowed some plant species to cycle P less efficiently. As oligotrophy is a defining parameter of Everglades wetlands, and likely promotes belowground production and peat development, reintroducing freshwater flow from an upstream canal had a favorable effect on ecosystem dynamics of tree islands in the study area. Important factors influencing the stable isotopic composition of nitrogen and carbon were: (1) a contribution to soil N by soil invertebrates, animal excrement, and microbes, (2) a possible NO3 source from an upstream canal and an "open" ecosystem N cycle, and (3) greater availability of phosphorus in tree islands relative to the marsh landscape, suggesting that tree island N cycling favors N sequestration. Hydrologic sources of N were dominated by surface water loads of NO3- and NH 4+, and an important soil N transformation promoting the net loss of surface water DIN was nitrate immobilization associated with soils and surficial leaf litter. The net inorganic N sequestration capacity of a seasonally flooded tree island was 50 g yr-1 m -2. Thus, tree islands likely have an important function in landscape sequestration of inorganic N, and may reduce significant anthropogenic N loads to downstream coastal systems. ^
Resumo:
Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates.
Resumo:
Natural environmental gradients provide important information about the ecological constraints on plant and microbial community structure. In a tropical peatland of Panama, we investigated community structure (forest canopy and soil bacteria) and microbial community function (soil enzyme activities and respiration) along an ecosystem development gradient that coincided with a natural P gradient. Highly structured plant and bacterial communities that correlated with gradients in phosphorus status and soil organic matter content characterized the peatland. A secondary gradient in soil porewater NH4 described significant variance in soil microbial respiration and β-1-4-glucosidase activity. Covariation of canopy and soil bacteria taxa contributed to a better understanding of ecological classifications for biotic communities with applicability for tropical peatland ecosystems of Central America. Moreover, plants and soils, linked primarily through increasing P deficiency, influenced strong patterning of plant and bacterial community structure related to the development of this tropical peatland ecosystem.
Resumo:
The Maya of the Yucatan region have a long history of keeping the native stingless bees (subfamily Meliponinae). However, market forces in the last few decades have driven the Maya to favor the use of invasive Africanized honey bees (Apis mellifera scutellata) for producing large quantities of high quality honey that has an international market. Furthermore, the native bees traditionally used by the Maya are now disappearing, along with the practice of keeping them. ^ An interdisciplinary approach was taken in order to determine the social factors behind the decrease in stingless beekeeping and the ecological driving forces behind their disappearance from the wild. Social research methods included participant observation with stingless beekeepers, Apis beekeepers, and marketing intermediaries. Ecological research methods included point observations of commonly known melliferous and polliniferous plants along transects in three communities with different degrees of human induced ecosystem disturbance. ^ The stingless bee species most important to the Maya, Melipona beecheii, has become extremely rare, and this has caused a breakdown of stingless beekeeping tradition, compounded with the pressure of the market economy, which fuels Apis beekeeping and has lessened the influence of traditional practices. The community with the heaviest amount of human induced ecosystem disturbance also had the highest degree of dominance of Apis mellifera, while the area with the most intact ecosystem had the highest diversity of stingless bees, though Apis mellifera was still the dominant species. Aggressive competitive behavior involving physical attacks by Apis mellifera against stingless bees was observed on several occasions, and this is a new observation previously unreported by science. ^
Resumo:
Insect biodiversity is unevenly distributed on local, regional, and global scales. Elevation is a key factor in the uneven distribution of insect diversity, serving as a proxy for a host of environmental variables. My study examines the relationship of Heteroptera (true bugs) species diversity, abundance, and morphology to elevational gradients and land-use regimes on Mt. Kilimanjaro, Tanzania, East Africa. Heteroptera specimens were collected from 60 research sites covering an elevational range of 3684m (866-4550m above sea level). Thirty of the sites were classified as natural, while the remaining 30 were classified as disturbed (e.g., agricultural use or converted to grasslands). I measured aspects of the body size of adult specimens and recorded their location of origin. I used regression models to analyze the relationships of Heteroptera species richness, abundance, and body measurements to elevation and land-use regime. Richness and abundance declined with greater elevation, controlling for land use. The declines were linear or logarithmic in form, depending on the model. Richness and abundance were greater in natural than disturbed sites, controlling for elevation. According to an interaction, richness decreased more in natural than disturbed sites with rising elevation. Body length increased as a quadratic function of elevation, adjusting for land use. Body width X length decreased as a logarithmic function of elevation, while leg length/body length decreased as a quadratic function. Leg length/body length was greater in disturbed than natural sites. Interactions indicated that body length and body width X length were greater in natural than disturbed sites as elevation rose, although the general trend was downward. Future research should examine the relative importance of land area, temperature, and resource constraints for Heteroptera diversity and morphology on Mt. Kilimanjaro.
Resumo:
Gene flow, or the exchange of genes between populations, is important because it determines the evolutionary trajectory of a species, including the relative influences of genetic drift and natural selection in the process of population differentiation. Gene flow differs among species because of variation in dispersal capability and abundances across taxa, and historical forces related to geological or lineage history. Both history and ecology influence gene flow in potentially complicated ways, and accounting for their effects remains an important problem in evolutionary biology. This research is a comparative study of gene flow and life-history in a monophyletic group of stream fishes, the darters. As a first step in disentangling historical and ecological effects, I reconstructed the phylogenetic relationships of the study species from nucleotide sequences in the mtDNA control region. I then used this phylogeny and regional glaciation history to infer historical effects on life-history evolution and gene flow in 15 species of darters. Gene flow was estimated indirectly, using information from 20 resolvable and polymorphic allozyme loci. When I accounted for historical effects, comparisons across taxa revealed that gene flow rates were closely associated with differences in clutch sizes and reproductive investment patterns. I hypothesized that differences in larval dispersal among taxa explained this relationship. Results from a field study of larval drift were consistent with this hypothesis. Finally, I asked whether there was an interaction between species' ecology and genetic differentiation across biogeographically distinct regions. Information from allozymes and mtDNA sequences revealed that life history plays an important role in the magnitude of species divergence across biogeographic boundaries. These results suggested an important association between life histories and rates of speciation following an allopatric isolation event. This research, along with other studies from the literature, further illustrates the enormous potential of North American freshwater fishes as a system for studying speciation processes. ^
Resumo:
Pteris vittata, the first reported arsenic hyperaccumulating plant, is potentially used in phytoremediation of arsenic, as it can accumulate up to 2.3% of arsenic in its fronds. In this study, the mechanisms of arsenic tolerance, uptake and transformation were studied in the plant. Arsenic species were analyzed by HPLC-AFS. Results showed that arsenic was mainly accumulated in leaflets, and inorganic arsenate and arsenite were only species in P. vittata. Arsenite was the predominant species in leaflets, whereas arsenate was the predominant species in roots. Arsenic induced the synthesis of thiol containing compounds in P. vittata. As-induced thiol was purified by a novel method: covalent chromatography following preparative HPLC. The purified thiol was characterized as a phytochelatin with two units (PC2). ^ In P. vittata, enhanced tolerance likely results from unusual intracellular detoxification mechanisms. Although PC-dependent sequestration of arsenic into vacuoles is essential for nonhyperaccumulators, this sequestration is not the major arsenic tolerance mechanisms in this arsenic hyperaccumulator. PC-independent sequestration of arsenic is likely the major arsenic tolerance mechanism. PC-dependent arsenic detoxification is probably a supplement to this major mechanism. ^ Interactions between arsenic and phosphate were studied. Under hydroponic condition, arsenic supply decreased the concentrations of phosphate in roots. In soil, arsenic increased the concentrations of phosphate in roots. Arsenic concentrations in rachises and leaflets were not affected by arsenic supply in either hydroponic or soil system. Phosphate decreased arsenic accumulation in roots, rachises and leaflets in the hydroponic system. ^ The uptake kinetics of arsenate, arsenite, monomethyl arsinic acid (MMA), dimethyl arsonic acid, and phosphate were studied in P. vittata. Phosphate uptake systems in Pteris vittata cannot distinguish phosphate and As(V), resulting in As hyperaccumulation. Arsenic hyperaccumulation in this plant is an inevitable consequence during phosphate acquisition. Arsenate, arsenite and MMA are transported via the phosphate uptake systems. The co-transport of arsenite/phosphate and MMA/phosphate is reported for the first time in plants. These unique phenomena are useful for understanding arsenic hyperaccumulation and the evolution of this capacity in P. vittata. ^
Resumo:
Chemical defenses are common among organisms and represent some of the most complex adaptations for avoiding predation, yet our understanding of the ecological nature of these systems remains incomplete. Poison frogs are a group of chemically defended organisms that are dependent entirely on diet for chemical defense. In this study, I identified the dietary arthropods responsible for chemical defense in poison frogs, described spatial and temporal patterns in alkaloid composition of poison frogs, and established links between patterns of variation in alkaloid defense and arthropod diet in poison frogs. Identifying dietary sources and studying patterns of variation in alkaloid composition is fundamental to understanding the ecology and evolution of chemical defense in poison frogs. ^ The dendrobatid poison frog Oophaga pumilio shares many alkaloids in common with other poison frogs and is known to vary in alkaloid composition throughout its geographic range. I designed my dissertation to take advantage of these characteristics and use O. pumilio as a model species for the study of chemical defense in poison frogs. Here, I identified siphonotid millipedes as a source for spiropyrrolizidine alkaloids, formicine ants as a source for pumiliotoxin alkaloids, and oribatid mites as dietary sources for the majority of alkaloids found in poison frogs. I found that alkaloid composition varied spatially and temporally, on both small and large scales, within and among populations of O. pumilio. Alkaloid variation between populations was related to geographic distance, and closer populations tended to have alkaloid compositions more similar to each other than to distant populations. ^ The findings of my study suggest that oribatid mites are the most important dietary source of alkaloids in poison frogs. However, overall alkaloid defense in poison frogs is based on a combination of dietary arthropods, including mites, ants, millipedes, and beetles. Variation in chemical defenses of poison frogs is due to (1) spatial and temporal differences in the presence of alkaloids in certain arthropods and (2) differences in the availability of certain alkaloid-containing arthropods, which are likely the result of differences as well as successional changes in forest structure among locations and through time. ^
Resumo:
Worldwide declines in populations of large elasmobranchs and the potential cascading effects on marine ecosystems have garnered considerable attention. Far less appreciated are the potential ecological impacts of changes in abundances of small to medium bodied elasmobranchs mesopredators. Crucial to elucidating the role of these elasmobranchs is an understanding of their habitat use and foraging ecology in pristine conditions. I investigated the trophic interactions and factors driving spatiotemporal variation in abundances of elasmobranch mesopredators in the relatively pristine ecosystem of Shark Bay, Australia. First, I describe the species composition and seasonal habitat use patterns of elasmobranch mesopredator on the sandflats of Shark Bay. Juvenile batoids dominated this diverse community and were extremely abundant in nearshore microhabitats during the warm season. Stomach content analysis and stable isotopic analysis revealed that there is a large degree of dietary overlap between common batoid species. Crustaceans, which tend to be found in seagrass habitats, dominated diets. Despite isotopic differences between many species, overlap in isotopic niche space was high and there was some degree of individual specialization. I then, investigated the importance of abiotic (temperature and water depth) and biotic (prey and predator abundance) factors in shaping batoid habitat use. Batoids were most abundant and tended to rest in shallow nearshore waters when temperatures were high. This pattern coincides with periods of large shark abundance suggesting batoids were seeking refuge from predators rather than selecting optimal temperatures. Finally, I used acoustic telemetry to examine batoid residency and diel use of the sandflats. Individual batoids were present on the sandflats during both the warm and cold seasons and throughout the diel cycle, suggesting lower sandflat densities during the cold season were a result of habitat shifts rather than migration out of Shark Bay. Combined, habitat use and dietary results suggest that batoids have the potential to seasonally impact sandflat dynamics through their presence, although foraging may be limited on the sandflats. Interestingly, my results suggest that elasmobranch mesopredators in pristine ecosystems probably are not regulated by food supply and their habitat use patterns and perhaps ecosystem impacts may be influenced by their predators.
Resumo:
We estimated trophic position and carbon source for three consumers (Florida gar, Lepisosteus platyrhincus; eastern mosquitofish, Gambusia holbrooki; and riverine grass shrimp, Palaemonetes paludosus) from 20 sites representing gradients of productivity and hydrological disturbance in the southern Florida Everglades, U.S.A. We characterized gross primary productivity at each site using light/dark bottle incubation and stem density of emergent vascular plants. We also documented nutrient availability as total phosphorus (TP) in floc and periphyton, and the density of small fishes. Hydrological disturbance was characterized as the time since a site was last dried and the average number of days per year the sites were inundated for the previous 10 years. Food-web attributes were estimated in both the wet and dry seasons by analysis of δ15N (trophic position) and δ13C (food-web carbon source) from 702 samples of aquatic consumers. An index of carbon source was derived from a two-member mixing model with Seminole ramshorn snails (Planorbella duryi) as a basal grazing consumer and scuds (amphipods Hyallela azteca) as a basal detritivore. Snails yielded carbon isotopic values similar to green algae and diatoms, while carbon values of scuds were similar to bulk periphyton and floc; carbon isotopic values of cyanobacteria were enriched in C13compared to all consumers examined. A carbon source similar to scuds dominated at all but one study site, and though the relative contribution of scud-like and snail-like carbon sources was variable, there was no evidence that these contributions were a function of abiotic factors or season. Gar consistently displayed the highest estimated trophic position of the consumers studied, with mosquitofish feeding at a slightly lower level, and grass shrimp feeding at the lowest level. Trophic position was not correlated with any nutrient or productivity parameter, but did increase for grass shrimp and mosquitofish as the time following droughts increased. Trophic position of Florida gar was positively correlated with emergent plant stem density.