2 resultados para Bioassays
em Digital Commons at Florida International University
Resumo:
Infectious diarrhea results in 2 to 5 million deaths worldwide per year, and treatments that are safe, effective, and readily available are under investigation. The field of medicinal ethnobotany focuses on plants that are used by different cultural groups for treating various diseases and evaluates these plants for efficacy and cytotoxicity. In the present study, ethnobotanical research was conducted with Central Anatolian villagers in Turkey. Folk concepts and etiologies surrounding diarrhea were analyzed, as were salient plant-based remedies for diarrhea. Reviewing the literature, 91 plant species were described as anti-diarrheal in all of Turkey. In Central Anatolia, villagers described 35 species. For continued research via bactericidal and bacteriostatic bioassays, 15 plants were selected. Methanolic and aqueous extracts of medicinally used plant parts were evaluated for inhibitory properties against 10 diarrhea-causing bacteria in the first bioassay, and later 21 bacteria in a second assay utilizing spectrophotometry. The cytotoxic properties were also evaluated in an Alamar Blue Assay using HepG-2, PC-3, and SkMEL-5 human cell lines. While several extracts showed bactericidal and bacteriostatic properties, the methanolic extract of R. canina galls inhibited the most bacteria at the lowest concentrations. They were not cytotoxic. Thus, R. canina methanolic gall extracts were selected for bio-assay guided fractionation. Antibacterial activity was maintained in the third fraction which was composed of almost pure ellagic acid. The bioassay was repeated with standard ellagic acid, and the polyphenol retained potency in inhibiting multiple bacterial strains. Several other extracts showed promise for safe, effective anti-bacterial remedies for diarrhea.
Resumo:
One-third of botanical remedies from southern Italy are used to treat skin and soft tissue infections (SST's). Methicillin-resistant Staphylococcus aureus (MRSA), a common cause of SSTIs, is responsible for increased morbidity and mortality from infections. Therapeutic options are limited by antibiotic resistance. Many plants possess potent antimicrobial compounds for these disorders. Validation of traditional medical practices is important for the people who rely on medicinal plants. Moreover, identification of novel antibiotics and anti-pathogenic agents for MRSA is important to global healthcare.^ I took an ethnopharmacological approach to understand how Italian medicinal plants used for the treatment of SSTIs affect MRSA growth and virulence. My hypothesis was that plants used in folk remedies for SSTI would exhibit lower cytotoxicity and greater inhibition of bacterial growth, biofilm formation and toxin production in MRSA than plants used for remedies unrelated to the skin or for plants with no ethnomedical application. The field portion of my research was conducted in the Vulture-Alto Bradano area of southern Italy. I collected 104 plant species and created 168 crude extracts. In the lab, I screened samples for activity against MRSA in a battery of bioassays. Growth inhibition was analyzed using broth microtiter assays for determination of the minimum inhibitory concentration. Interference with quorum-sensing (QS) processes, which mediate pathogenicity, was quantified through RP-HPLC of δ-toxin production. Interference with biofilm formation and adherence was assessed using staining methods. The mammalian cytotoxicity of natural products was analyzed using MTT cell proliferation assay techniques.^ Although bacteriostatic activity was limited, extracts from six plants used in Italian folk medicine (Arundo donax, Ballota nigra, Juglans regia, Leopoldia comosa, Marrubium vulgare, and Rubus ulmifolius ) significantly inhibited biofilm formation and adherence. Moreover, plants used to treat SSTI demonstrated significantly greater anti-biofilm activity when compared to plants with no ethnomedical application. QSI activity was evident in 90% of the extracts tested and extracts from four plants ( Ballota nigra, Castanea saliva, Rosmarinus officinalis, and Sambucus ebulus) exhibited a significant dose-dependent response. Some of the plant remedies for SSTI identified in this study can be validated due to anti-MRSA activity.^