4 resultados para Behavioral Decision-making

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household's evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household's optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most important factor that affects the decision making process in finance is the risk which is usually measured by variance (total risk) or systematic risk (beta). Since investors’ sentiment (whether she is an optimist or pessimist) plays a very important role in the choice of beta measure, any decision made for the same asset within the same time horizon will be different for different individuals. In other words, there will neither be homogeneity of beliefs nor the rational expectation prevalent in the market due to behavioral traits. This dissertation consists of three essays. In the first essay, “ Investor Sentiment and Intrinsic Stock Prices”, a new technical trading strategy was developed using a firm specific individual sentiment measure. This behavioral based trading strategy forecasts a range within which a stock price moves in a particular period and can be used for stock trading. Results indicate that sample firms trade within a range and give signals as to when to buy or sell. In the second essay, “Managerial Sentiment and the Value of the Firm”, examined the effect of managerial sentiment on the project selection process using net present value criterion and also effect of managerial sentiment on the value of firm. Final analysis reported that high sentiment and low sentiment managers obtain different values for the same firm before and after the acceptance of a project. Changes in the cost of capital, weighted cost of average capital were found due to managerial sentiment. In the last essay, “Investor Sentiment and Optimal Portfolio Selection”, analyzed how the investor sentiment affects the nature and composition of the optimal portfolio as well as the portfolio performance. Results suggested that the choice of the investor sentiment completely changes the portfolio composition, i.e., the high sentiment investor will have a completely different choice of assets in the portfolio in comparison with the low sentiment investor. The results indicated the practical application of behavioral model based technical indicator for stock trading. Additional insights developed include the valuation of firms with a behavioral component and the importance of distinguishing portfolio performance based on sentiment factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most important factor that affects the decision making process in finance is the risk which is usually measured by variance (total risk) or systematic risk (beta). Since investors' sentiment (whether she is an optimist or pessimist) plays a very important role in the choice of beta measure, any decision made for the same asset within the same time horizon will be different for different individuals. In other words, there will neither be homogeneity of beliefs nor the rational expectation prevalent in the market due to behavioral traits. This dissertation consists of three essays. In the first essay, Investor Sentiment and Intrinsic Stock Prices, a new technical trading strategy is developed using a firm specific individual sentiment measure. This behavioral based trading strategy forecasts a range within which a stock price moves in a particular period and can be used for stock trading. Results show that sample firms trade within a range and show signals as to when to buy or sell. The second essay, Managerial Sentiment and the Value of the Firm, examines the effect of managerial sentiment on the project selection process using net present value criterion and also effect of managerial sentiment on the value of firm. Findings show that high sentiment and low sentiment managers obtain different values for the same firm before and after the acceptance of a project. The last essay, Investor Sentiment and Optimal Portfolio Selection, analyzes how the investor sentiment affects the nature and composition of the optimal portfolio as well as the performance measures. Results suggest that the choice of the investor sentiment completely changes the portfolio composition, i.e., the high sentiment investor will have a completely different choice of assets in the portfolio in comparison with the low sentiment investor. The results indicate the practical application of behavioral model based technical indicators for stock trading. Additional insights developed include the valuation of firms with a behavioral component and the importance of distinguishing portfolio performance based on sentiment factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household’s evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household’s optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.