4 resultados para Base of the Pyramid
em Digital Commons at Florida International University
Resumo:
Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.
Resumo:
The Andean Southern Volcanic Zone (SVZ) is a vast and complex continental arc that has been studied extensively to provide an understanding of arc-magma genesis, the origin and chemical evolution of the continental crust, and geochemical compositions of volcanic products. The present study focuses on distinguishing the magma/sub-arc crustal interaction of eruptive products from the Azufre-Planchon-Peteroa (APP 35°15'S) volcanic center and other major centers in the Central SVZ (CSVZ 37°S–42°S), Transitional SVZ (TSVZ 34.3–37.0°S), and Northern SVZ (NSVZ 33°S–34°30'S). New Hf and Nd isotopic and trace element data for SVZ centers are consistent with former studies that these magmas experienced variable depths of crystal fractionation, and that crustal assimilation is restricted to the lower crustal depths with an apparent role of garnet. Thermobarometric calculations applied to magma compositions constrain the depth of magma separation from mantle sources in all segments of the SVZ to(70-90 km). Magmatic separation at the APP complex occurs at an average depth of ~50 km which is confined to the mantle lithosphere and the base of the crust suggesting localized thermal abrasion both reservoirs. Thermobarometric calculations indicate that CSVZ primary magmas arise from a similar average depth of (~54 km) which confines magma separation to the asthenospheric mantle. The northwards along-arc Sr-Nd-Hf isotopic data and LREE enrichment accompanied with HREE depletion of SVZ mafic magmas correlates well with northward increasing crustal thickness and decreasing primary melt separation from mantle source regions indicating an increased involvement of lower crustal components in SVZ magma petrogenesis. ^ The study concludes that the development of mature subduction zones over millions of years of continuous magmatism requires that mafic arc derived melts stagnate at lower crustal levels due to density similarities and emplace at lower crustal depths. Basaltic underplating creates localized hot zone environments below major magmatic centers. These regions of high temperature/partial melting, and equilibration with underplated mafic rocks provides the mechanism that controls trace element and isotopic variability of primary magmas of the TSVZ and NSVZ from their baseline CSVZ-like precursors.^
Resumo:
An important episode of carbon sequestration, Oceanic Anoxic Event 1a (OAE-1a), characterizes the Lower Aptian worldwide, and is mostly known from deeper-water settings. The present work of two Lower Aptian deposits, Madotz (N Spain) and Curití Quarry (Colombia), is a multiproxy study that includes fossil assemblages, microfacies, X-ray diffraction bulk and clay mineralogy, elemental analyses (major, minor, trace elements), Rock-Eval pyrolysis, biomarkers, inorganic and organic carbon content, and stable carbon isotopes. The results provide baseline evidence of the local and global controlling environmental factors influencing OAE-1a in shallow-water settings. The data also improve our general understanding of the conditions under which organic-carbon-rich deposits accumulate. The sequence at Madotz includes four intervals (Unit 1; Subunits 2a, 2b and 2c) that overlap the times prior to, during and after the occurrence of OAE-1a. The Lower Unit 1(3m thick) is essentially siliciclastic, and Subunit 2a (20m) contains Urgonian carbonate facies that document abruptly changing platform conditions prior to OAE-1a. Subunit 2b (24.4 m) is a mixed carbonate-siliciclastic facies with orbitolinid-rich levels that coincides with OAE-1a δ13C stages C4-C6, and is coeval with the upper part of the Deshayesites forbesi ammonite zone. Levels with pyrite and the highest TOC values (0.4-0.97%), interpreted as accumulating under suboxic conditions, and are restricted to δ13C stages C4 and C5. The best development of the suboxic facies is at the level representing the peak of the transgression. Subunit 2c, within δ13C stage C7, shows a return of the Urgonian facies. The 23.35-m section at Curití includes a 6.3-m interval at the base of the Paja Formation dominated by organic-rich marlstones and shales lacking benthic fossils and bioturbation, with TOC values as high as 8.84%. The interval overlies a level containing reworked and phosphatized assemblages of middle Barremian to lowest Aptian ammonites. The range of values and the overall pattern of the δ13Corg (-22.05‰ to -20.47‰) in the 6.3m-interval is comparable with Lower Aptian δ13C stage C7. Thus, conditions of oxygen depletion at this site also occurred after Oceanic Anoxic Event-1a, which developed between carbon isotope stages C3 and C6. Both sites, Madotz and Curití, attest to the importance of terrigenous and nutrient fluxes in increasing OM productivity that led to episodic oxygen deficiency.
Resumo:
The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.