3 resultados para BONFERRONI
em Digital Commons at Florida International University
Resumo:
The present study identified and compared Coronary Heart Disease (CHD) risk factors quantified as “CHD risk point standards” (CHDRPS) among tri-ethnic (White non-Hispanic [WNH], Hispanic [H], and Black non-Hispanic [BNH]) college students. All 300 tri-ethnic subjects completed the Cardiovascular Risk Assessment Instruments and had blood pressure readings recorded on three occasions. The Bioelectrical Impedance Analysis (BIA) was used to measure body composition. Students' knowledge of CHD risk factors was also measured. In addition, a 15 ml fasting blood sample was collected from 180 subjects and blood lipids and Homocysteine (tHcy) levels were measured. Data were analyzed by gender and ethnicity using one-way Analysis of Variance (ANOVA) with Bonferroni's pairwise mean comparison procedure, Pearson correlation, and Chi-square test with follow-up Bonferroni's Chi-square tests. ^ The mean score of CHDRPS for all subjects was 19.15 ± 6.79. Assigned to the CHD risk category, college students were below-average risk of developing CHD. Males scored significantly (p < 0.013) higher for CHD risk than females, and BNHs scored significantly (p < 0.033) higher than WNHs. High consumption of dietary fat saturated fat and cholesterol resulted in a high CHDRPS among H males and females and WNH females. High alcohol consumption resulted in a high CHDRPS among all subjects. Mean tHcy ± SD of all subjects was 6.33 ± 3. 15 μmol/L. Males had significantly (p < 0.001) higher tHcy than females. Black non-Hispanic females and H females had significantly (p < 0.003) lower tHcy than WNH females. Positive associations were found between tHcy levels and CHDRPS among females (p < 0.001), Hs (p < 0.001), H males (p < 0.049), H females (p < 0.009), and BNH females (p < 0.005). Significant positive correlations were found between BMI levels and CHDRPS in males (p < 0.001), females (p < 0.001), WNHs (p < 0.008), Hs (p < 0.001), WNH males (p < 0.024), H males (p < 0.004) and H females (p < 0.001). The mean knowledge of CHD questions of all subjects was 71.70 ± 7.92 out of 100. The mean knowledge of CHD was significantly higher for WNH males (p < 0.039) than BNH males. A significant inverse correlation (r = 0.392, p < 0.032) was found between the CHD knowledge and CHDRPS in WNH females. The researcher's findings indicate strong gender and ethnic differences in CHD risk factors among the college-age population. ^
Resumo:
Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87–100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling's T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.
Resumo:
Elemental analysis can become an important piece of evidence to assist the solution of a case. The work presented in this dissertation aims to evaluate the evidential value of the elemental composition of three particular matrices: ink, paper and glass. In the first part of this study, the analytical performance of LIBS and LA-ICP-MS methods was evaluated for paper, writing inks and printing inks. A total of 350 ink specimens were examined including black and blue gel inks, ballpoint inks, inkjets and toners originating from several manufacturing sources and/or batches. The paper collection set consisted of over 200 paper specimens originating from 20 different paper sources produced by 10 different plants. Micro-homogeneity studies show smaller variation of elemental compositions within a single source (i.e., sheet, pen or cartridge) than the observed variation between different sources (i.e., brands, types, batches). Significant and detectable differences in the elemental profile of the inks and paper were observed between samples originating from different sources (discrimination of 87 – 100% of samples, depending on the sample set under investigation and the method applied). These results support the use of elemental analysis, using LA-ICP-MS and LIBS, for the examination of documents and provide additional discrimination to the currently used techniques in document examination. In the second part of this study, a direct comparison between four analytical methods (µ-XRF, solution-ICP-MS, LA-ICP-MS and LIBS) was conducted for glass analyses using interlaboratory studies. The data provided by 21 participants were used to assess the performance of the analytical methods in associating glass samples from the same source and differentiating different sources, as well as the use of different match criteria (confidence interval (±6s, ±5s, ±4s, ±3s, ±2s), modified confidence interval, t-test (sequential univariate, p=0.05 and p=0.01), t-test with Bonferroni correction (for multivariate comparisons), range overlap, and Hotelling’s T2 tests. Error rates (Type 1 and Type 2) are reported for the use of each of these match criteria and depend on the heterogeneity of the glass sources, the repeatability between analytical measurements, and the number of elements that were measured. The study provided recommendations for analytical performance-based parameters for µ-XRF and LA-ICP-MS as well as the best performing match criteria for both analytical techniques, which can be applied now by forensic glass examiners.