51 resultados para BISCAYNE-BAY
em Digital Commons at Florida International University
Resumo:
Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^
Resumo:
The spatial and temporal distribution of modern diatom assemblages in surface sediments, on the most dominant macrophytes, and in the water column at 96 locations in Florida Bay, Biscayne Bay and adjacent regions were examined in order to develop paleoenvironmental prediction models for this region. Analyses of these distributions revealed distinct temporal and spatial differences in assemblages among the locations. The differences among diatom assemblages living on subaquatic vegetation and sediments, and in the water column were significant. Because concentrations of salts, total phosphorus (WTP), total nitrogen (WTN) and total organic carbon (WTOC) are partly controlled by water management in this region, diatom-based models were produced to assess these variables. Discriminant function analyses showed that diatoms can also be successfully used to reconstruct changes in the abundance of diatom assemblages typical for different habitats and life habits. ^ To interpret paleoenvironmental changes, changes in salinity, WTN, WTP and WTOC were inferred from diatoms preserved in sediment cores collected along environmental gradients in Florida Bay (4 cores) and from nearshore and offshore locations in Biscayne Bay (3 cores). The reconstructions showed that water quality conditions in these estuaries have been fluctuating for thousands of years due to natural processes and sea-level changes, but almost synchronized shifts in diatom assemblages occurred in the mid-1960’s at all coring locations (except Ninemile Bank and Bob Allen Bank in Florida Bay). These alterations correspond to the major construction of numerous water management structures on the mainland. Additionally, all the coring sites (except Card Sound Bank, Biscayne Bay and Trout Cove, Florida Bay) showed decreasing salinity and fluctuations in nutrient levels in the last two decades that correspond to increased rainfall in the 1990’s and increased freshwater discharge to the bays, a result of increased freshwater deliveries to the Everglades by South Florida Water Management District in the 1980’s and 1990’s. Reconstructions of the abundance of diatom assemblages typical for different habitats and life habits revealed multiple sources of diatoms to the coring locations and that epiphytic assemblages in both bays increased in abundance since the early 1990’s. ^
Resumo:
The coastal bays of South Florida are located downstream of the Florida Everglades, where a comprehensive restoration plan will strongly impact the hydrology of the region. Submerged aquatic vegetation communities are common components of benthic habitats of Biscayne Bay, and will be directly affected by changes in water quality. This study explores community structure, spatio-temporal dynamics, and tissue nutrient content of macroalgae to detect and describe relationships with water quality. The macroalgal community responded to strong variability in salinity; three distinctive macroalgal assemblages were correlated with salinity as follows: (1) low-salinity, dominated by Chara hornemannii and a mix of filamentous algae; (2) brackish, dominated by Penicillus capitatus, Batophora oerstedii, and Acetabularia schenckii; and (3) marine, dominated by Halimeda incrassata and Anadyomene stellata. Tissue-nutrient content was variable in space and time but tissues at all sites had high nitrogen and N:P values, demonstrating high nitrogen availability and phosphorus limitation in this region. This study clearly shows that distinct macroalgal assemblages are related to specific water quality conditions, and that macroalgal assemblages can be used as community-level indicators within an adaptive management framework to evaluate performance and restoration impacts in Biscayne Bay and other regions where both freshwater and nutrient inputs are modified by water management decisions.
Resumo:
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.
Resumo:
Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.
Resumo:
The spatial and temporal distribution of planktonic, sediment-associated and epiphytic diatoms among 58 sites in Biscayne Bay, Florida was examined in order to identify diatom taxa indicative of different salinity and water quality conditions, geographic locations and habitat types. Assessments were made in contrasting wet and dry seasons in order to develop robust assessment models for salinity and water quality for this region. We found that diatom assemblages differed between nearshore and offshore locations, especially during the wet season when salinity and nutrient gradients were steepest. In the dry season, habitat structure was primary determinant of diatom assemblage composition. Among a suite of physicochemical variables, water depth and sediment total phosphorus (STP) were most strongly associated with diatom assemblage composition in the dry season, while salinity and water total phosphorus (TP) were more important in the wet season. We used indicator species analysis (ISA) to identify taxa that were most abundant and frequent at nearshore and offshore locations, in planktonic, epiphytic and benthic habitats and in contrasting salinity and water quality regimes. Because surface water concentrations of salts, total phosphorus, nitrogen (TN) and organic carbon (TOC) are partly controlled by water management in this region, diatom-based models were produced to infer these variables in modern and retrospective assessments of management-driven changes. Weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions produced reliable estimates of salinity, TP, TN and TOC from diatoms (r2 = 0.92, 0.77, 0.77 and 0.71, respectively). Because of their sensitivity to salinity, nutrient and TOC concentrations diatom assemblages should be useful in developing protective nutrient criteria for estuaries and coastal waters of Florida.
Resumo:
Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the second half of the 20th century, which coincided with the construction of canals, landfills, marinas and water treatment plants along the western margin of Biscayne Bay. Increased magnitude and rate of the diatom assemblage restructuring in the mid- and late-1900s, suggest that large environmental changes are occurring more rapidly now than in the past.
Resumo:
The management and restoration of the Biscayne Bay Coastal Wetlands (BBCW) is a complex issue. Unlike other natural areas under the supervision of the National Park System, the BBCW had endured many years of neglect and abuse by homesteaders who, prior to the establishment of Biscayne National Monument in 1968, had free reign of the area and tried to farm and develop the land by ditching and infilling. Furthermore, public works projects, dating back to the early 1900’s for mosquito control, land reclamation, and storm surge protection along with homesteader activities have combined to compartmentalize the coastal wetlands of present Biscayne National Park and adjacent marshes.
Resumo:
The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.^
Resumo:
Established as a National Park in 1980, Biscayne National Park (BISC) comprises an area of nearly 700 km2 , of which most is under water. The terrestrial portions of BISC include a coastal strip on the south Florida mainland and a set of Key Largo limestone barrier islands which parallel the mainland several kilometers offshore and define the eastern rim of Biscayne Bay. The upland vegetation component of BISC is embedded within an extensive coastal wetland network, including an archipelago of 42 mangrove-dominated islands with extensive areas of tropical hardwood forests or hammocks. Several databases and vegetation maps describe these terrestrial communities. However, these sources are, for the most part, outdated, incomplete, incompatible, or/and inaccurate. For example, the current, Welch et al. (1999), vegetation map of BISC is nearly 10 years old and represents the conditions of Biscayne National Park shortly after Hurricane Andrew (August 24, 1992). As a result, a new terrestrial vegetation map was commissioned by The National Park Service Inventory and Monitoring Program South Florida / Caribbean Network.
Resumo:
The anisotropy of the Biscayne Aquifer which serves as the source of potable water for Miami-Dade County was investigated by applying geophysical methods. Electrical resistivity imaging, self potential and ground penetration radar techniques were employed in both regional and site specific studies. In the regional study, electrical anisotropy and resistivity variation with depth were investigated with azimuthal square array measurements at 13 sites. The observed coefficient of electrical anisotropy ranged from 1.01 to 1.36. The general direction of measured anisotropy is uniform for most sites and trends W-E or SE-NW irrespective of depth. Measured electrical properties were used to estimate anisotropic component of the secondary porosity and hydraulic anisotropy which ranged from 1 to 11% and 1.18 to 2.83 respectively. 1-D sounding analysis was used to models the variation of formation resistivity with depth. Resistivities decreased from NW (close to the margins of the everglades) to SE on the shores of Biscayne Bay. Porosity calculated from Archie's law, ranged from 18 to 61% with higher values found along the ridge. Higher anisotropy, porosities and hydraulic conductivities were on the Atlantic Coastal Ridge and lower values at low lying areas west of the ridge. The cause of higher anisotropy and porosity is attributed to higher dissolution rates of the oolitic facies of the Miami Formation composing the ridge. The direction of minimum resistivity from this study is similar to the predevelopment groundwater flow direction indicated in published modeling studies. Detailed investigations were carried out to evaluate higher anisotropy at West Perrine Park located on the ridge and Snapper Creek Municipal well field where the anisotropy trend changes with depth. The higher anisotropy is attributed to the presence of solution cavities oriented in the E-SE direction on the ridge. Similarly, the change in hydraulic anisotropy at the well field might be related to solution cavities, the surface canal and groundwater extraction wells.
Resumo:
Throughout the Biscayne Bay watershed, existing coastal wetland communities have been cut off from sheet flow for decades. With the expectation that reconnection of these wetlands to upstream water sources would alter existing hydrologic conditions and recreate a more natural sheet flow to Biscayne National Park, a demonstration project on freshwater rediversion was undertaken. The objectives of the project were to document the effects of freshwater diversion on: (a) swamp and nearshore water chemistry and hydrology; (b) soil development processes; (c) macrophyte and benthic algal community composition, structure and production; (d) abundance of epiphytic and epibenthic invertebrates; (e) zonation, production, and phenology of primary producers in the nearshore environment, and (f) exchanges of nutrients and particulates between nearshore and mangrove ecosystems.
Resumo:
In 1976, Harold Crosby became FIU’s second president, agreeing to serve a three-year interim term. Under his leadership, the North Campus (now the Biscayne Bay Campus) opened in 1977. President Crosby was insistent that the “I” in FIU be highlighted, prompting the launch of new programs with an international focus and faculty recruitment from the Caribbean and Latin America. President Crosby’s resignation in 1979 triggered the search for a permanent president.
Resumo:
Sympatric populations of P. brasiliensis and P. duorarum from Biscayne Bay, Florida, revealed species-specific satellite DNA organizational patterns with the restriction endonuclease EcoRI. The species-specific satellite DNA patterns can be explained as resulting from differential amplification/deletion events having altered monomer arrays after the divergence of these two species. Two discontinuous populations of P. duorarum (Biscayne Bay and Dry Tortugas) were found to exhibit distinct EcoRI satellite fragment patterns; BamHI repetitive fragments specific to the Dry Tortugas P. duorarum population were also detected. In addition, the evolutionary conservation of the Penaeus (Farfantepenaeus) satellites was investigated. The putative conservation of sequences related to one cloned P. duorarum satellite monomer unit suggests that the FTR satellite DNA family may not only be of use as a genome tag to distinguish between sibling and cryptic Penaeus species but may also serve as a probe to better understand decapod crustacean genome organization and evolution. ^
Resumo:
The purpose of this study is to characterize the degradation products of Irgarol 1051(2-methylthio-4-tertbutylamino-6-cyclopropylamino- s-triazine), a compound recently developed for use as an antifouling agent on boat hulls. The photolytic fate of this compound in different natural waters will be used in the development of a monitoring program designed to survey the occurrence of this compound and its degradation products in South Florida marinas, the Miami River and surrounding coastal areas. ^ The transformation of Irgarol 1051 and degradation rate constants were characterized in a photo-reactor under simulated natural conditions. The degradation pathway in the UVB-UVA region (300nm to 350nm) closely resembled the transformations under natural conditions in the pond, showing that both direct photolysis and the presence of natural sensitizers play an important role in the abiotic transformation of this compound. Irgarol 1051 has an average environmental half-life of 10 days in surface waters. Average concentrations from samples around Biscayne Bay and the Miami River increased from 1–5 ng/L during 1999 and increased to between 28 and 38 ng/L in 2001, respectively. Irgarol concentrations showed a strong correlation with concentrations of its major transformation product, M1, from samples collected as part of the study ([M1]/[Irgarol] = 0.247, R2 = 0.9165, n = 125). ^