5 resultados para BETA-CELL LINE
em Digital Commons at Florida International University
Resumo:
Background: Diabetes and diabetes-related complications are major causes of morbidity and mortality in the United States. Depressive symptoms and perceived stress have been identified as possible risk factors for beta cell dysfunction and diabetes. The purpose of this study was to assess associations between depression symptoms and perceived stress with beta cell function between African and Haitian Americans with and without type 2 diabetes. Participants and Methods: Informed consent and data were available for 462 participants (231 African Americans and 231 Haitian Americans) for this cross-sectional study. A demographic questionnaire developed by the Primary Investigator was used to collect information regarding age, gender, smoking, and ethnicity. Diabetes status was determined by self-report and confirmed by fasting blood glucose. Anthropometrics (weight, and height and waist circumference) and vital signs (blood pressure) were taken. Blood samples were drawn after 8 10 hours over-night fasting to measure lipid panel, fasting plasma glucose and serum insulin concentrations. The homeostatic model assessment, version 2 (HOMA2) computer model was used to calculate beta cell function. Depression was assessed using the Beck Depression Inventory-II (BDI-II) and stress levels were assessed using the Perceived Stress Scale (PSS). Results: Moderate to severe depressive symptoms were more likely for persons with diabetes (p = 0.030). There were no differences in perceived stress between ethnicity and diabetes status (p = 0.283). General linear models for participants with and without type 2 diabetes using beta cell function as the dependent variable showed no association with depressive symptoms and perceived stress; however, Haitian Americans had significantly lower beta cell function than African Americans both with and without diabetes and adjusting for age, gender, waist circumference and smoking. Further research is needed to compare these risk factors in other race/ethnic groups.
Resumo:
Hyperthermia is usually used at a sub-lethal level in cancer treatment to potentiate the effects of chemotherapy. The purpose of this study is to investigate the role of heating rate in achieving synergistic cell killing by chemotherapy and hyperthermia. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. The cytotoxicity, mode of cell death, induction of thermal tolerance and P-gp mediated MDR following the two different modes of heating were studied. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. A slow rate hyperthermia was provided by a cell culture incubator. The results show that the potentiating effect of hyperthermia to chemotherapy can be maximized by increasing the rate of heating as evident by the results from the cytotoxicity assay. When delivered at the same thermal dose, a rapid increase in temperature from 37°C to 43°C caused more cell membrane damage than gradually heating the cells from 37°C to 43°C and thus allowed for more intracellular accumulation of the chemotherapeutic agents. Different modes of cell death are observed by the two hyperthermia delivery methods. The rapid rate laser-ICG hyperthermia @ 43°C caused cell necrosis whereas the slow rate incubator hyperthermia @ 43°C induced very mild apoptosis. At 43°C a positive correlation between thermal tolerance and the length of hyperthermia exposure is identified. This study shows that by increasing the rate of heating, less thermal dose is needed in order to overcome P-gp mediated MDR.
Resumo:
Treatment of sensory neuropathies, whether inherited or caused by trauma, the progress of diabetes, or other disease states, are among the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord would be the logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the transplant of cells or a cell line to treat human disease. The history of the research and development of useful cell-transplant-based approaches offers an understanding of the advantages and problems associated with these technologies, but as an adjuvant or replacement for current pharmacological treatments, cell therapy is a likely near future clinical tool for improved health care.
Resumo:
Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain.
Resumo:
C-reactive protein (CRP), a normally occurring human plasma protein may become elevated as much as 1,000 fold during disease states involving acute inflammation or tissue damage. Through its binding to phosphorylcholine in the presence of calcium, CRP has been shown to potentiate the activation of complement, stimulate phagocytosis and opsonize certain microorganisms. Utilizing a flow cytometric functional ligand binding assay I have demonstrated that a monocyte population in human peripheral blood and specific human-derived myelomonocytic cell lines reproducibly bind an evolutionarily conserved conformational pentraxin epitope on human CRP through a mechanism that does not involve its ligand, phosphorylcholine. ^ A variety of cell lines at different stages of differentiation were examined. The monocytic cell line, THP-1, bound the most CRP followed by U937 and KG-1a cells. The HL-60 cell line was induced towards either the granulocyte or monocyte pathway with DMSO or PMA, respectively. Untreated HL-60 cells or DMSO-treated cells did not bind CRP while cells treated with PMA showed increased binding of CRP, similar to U-937 cells. T cell and B-cell derived lines were negative. ^ Inhibition studies with Limulin and human SAP demonstrated that the binding site is a conserved pentraxin epitope. The calcium requirement necessary for binding to occur indicated that the cells recognize a conformational form of CRP. Phosphorylcholine did not inhibit the reaction therefore the possibility that CRP had bound to damaged membranes with exposed PC sites was discounted. ^ A study of 81 normal donors using flow cytometry demonstrated that a majority of peripheral blood monocytes (67.9 ± 1.3, mean ± sem) bound CRP. The percentage of binding was normally distributed and not affected by gender, age or ethnicity. Whole blood obtained from donors representing a variety of disease states showed a significant reduction in the level of CRP bound by monocytes in those donors classified with infection, inflammation or cancer. This reduction in monocyte populations binding CRP did not correlate with the concentration of plasma CRP. ^ The ability of monocytes to specifically bind CRP combined with the binding reactivity of the protein itself to a variety of phosphorylcholine containing substances may represent an important bridge between innate and adaptive immunity. ^