2 resultados para BEE OVARY
em Digital Commons at Florida International University
Resumo:
The Maya of the Yucatan region have a long history of keeping the native stingless bees (subfamily Meliponinae). However, market forces in the last few decades have driven the Maya to favor the use of invasive Africanized honey bees (Apis mellifera scutellata) for producing large quantities of high quality honey that has an international market. Furthermore, the native bees traditionally used by the Maya are now disappearing, along with the practice of keeping them. ^ An interdisciplinary approach was taken in order to determine the social factors behind the decrease in stingless beekeeping and the ecological driving forces behind their disappearance from the wild. Social research methods included participant observation with stingless beekeepers, Apis beekeepers, and marketing intermediaries. Ecological research methods included point observations of commonly known melliferous and polliniferous plants along transects in three communities with different degrees of human induced ecosystem disturbance. ^ The stingless bee species most important to the Maya, Melipona beecheii, has become extremely rare, and this has caused a breakdown of stingless beekeeping tradition, compounded with the pressure of the market economy, which fuels Apis beekeeping and has lessened the influence of traditional practices. The community with the heaviest amount of human induced ecosystem disturbance also had the highest degree of dominance of Apis mellifera, while the area with the most intact ecosystem had the highest diversity of stingless bees, though Apis mellifera was still the dominant species. Aggressive competitive behavior involving physical attacks by Apis mellifera against stingless bees was observed on several occasions, and this is a new observation previously unreported by science. ^
Resumo:
Wolbachia pipientis are bacterial endosymbionts carried by millions of invertebrate species, including ~40% of insect species and some filarial nematodes. In insects, basic Wolbachia research has potential applications in controlling vector borne disease. Conversely, Wolbachia of filarial nematodes are causative agents of neglected tropical diseases such as lymphatic filariasis and African river blindness. However, remarkably little is known about how Wolbachia interact with their hosts at the molecular level. Understanding this is important to inform the basis for symbiosis and help prevent human disease. I used a high-throughput proteomics approach to study how Drosophila host cells are modified by Wolbachia infection. This analysis identified 23 Drosophila proteins that significantly changed in amount as a result of Wolbachia infection. A subset of differentially abundant host proteins were consistent with Wolbachia-associated phenotypes reported previously. This study also provides the first ever discovery-based evidence for a Wolbachia-associated change in maternal germline histone loads, which has possible implications in Rescue of a common Wolbachia-induced reproductive manipulation known as Cytoplasmic Incompatibility.