2 resultados para BAYESIAN NETWORK
em Digital Commons at Florida International University
Resumo:
In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.
Resumo:
The etiology of central nervous system tumors (CNSTs) is mainly unknown. Aside from extremely rare genetic conditions, such as neurofibromatosis and tuberous sclerosis, the only unequivocally identified risk factor is exposure to ionizing radiation, and this explains only a very small fraction of cases. Using meta-analysis, gene networking and bioinformatics methods, this dissertation explored the hypothesis that environmental exposures produce genetic and epigenetic alterations that may be involved in the etiology of CNSTs. A meta-analysis of epidemiological studies of pesticides and pediatric brain tumors revealed a significantly increased risk of brain tumors among children whose mothers had farm-related exposures during pregnancy. A dose response was recognized when this risk estimate was compared to those for risk of brain tumors from maternal exposure to non-agricultural pesticides during pregnancy, and risk of brain tumors among children exposed to agricultural activities. Through meta-analysis of several microarray studies which compared normal tissue to astrocytomas, we were able to identify a list of 554 genes which were differentially expressed in the majority of astrocytomas. Many of these genes have in fact been implicated in development of astrocytoma, including EGFR, HIF-1α, c-Myc, WNT5A, and IDH3A. Reverse engineering of these 554 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I-IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme (GBM) were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. Lastly, bioinformatics analysis of environmental databases and curated published results on GBM was able to identify numerous potential pathways and geneenvironment interactions that may play key roles in astrocytoma development. Findings from this research have strong potential to advance our understanding of the etiology and susceptibility to CNSTs. Validation of our ‘key genes’ and pathways could potentially lead to useful tools for early detection and novel therapeutic options for these tumors.