7 resultados para BAND OFFSET
em Digital Commons at Florida International University
Resumo:
Black band disease of corals consists of a microbial community dominated by the cyanobacteriurn Phormidium corallyticum. The disease primarily affects reef-framework coral species, Active black band disease continually opens up new substrate in reef environments by destroying coral tissue as the disease line advances across the surface of infected colonies. A field study was carried out to determine the abundance and distribution of black band disease on the reef building corals in the Florida Keys. During July of 1992 and 1993, up to 0.72% of coral colonies were infected with black band disease. Analysis of the distribution showed that the disease was clumped. Seasonal patters varied, with some coral colonies infected year round, others exhibiting reinfection from summer 1992 to summer 1993, and some colonies infected for one year only. Statistical analysis of black band disease incidence in relation to various environmental parameters revealed that black band disease was associated with relatively shallow water depths, higher temperatures, elevated nitrite levels, and decreased ortho-phosphate levels. Additional field studies determined recovery of scleractinian coral colonies damaged or killed through the activities of black band disease over a five-year period. These studies determined if the newly exposed substrate was recolonized through scleractinian recruitment, if there was overgrowth of the damaged areas by the formerly diseased colony, or if coral tissue destruction continued after the cessation of black band disease activity. Tissue loss continued on all coral colonies with only one colony exhibiting new tissue growth. The majority of recolonization was by non-reef-framework corals and octocorallians, limited recruitment by framework species was observed. Physiological studies of P. corallyticum were carried out to investigate the photosynthetic capacity of this cyanobacterium, and to determine if this species has the ability to fix dinitrogen. The results of this research demonstrated that P. corallyticum reaches maximum photosynthetic rates at very low light intensities (27.9 μE/m/sec), and that P. corallyticum is able to carry out oxygenic photosynthesis in the presence of sulfide, an ability that is uncommon in prokaryotic organisms. ^
Resumo:
Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.
Resumo:
Coral diseases were unknown in the scientific community fifty years ago. Since the discovery of a coral disease in 1965, there has been an exponential increase in the number of known coral diseases, as the abundance, prevalence, distribution, and number of host species affected has also significantly increased. Coral diseases are recognized as contributing significantly to the dramatic losses of coral cover on a global basis, particularly in the Caribbean. The apparent sudden emergence of coral diseases suggests that they may be a symptom of an overall trend associated with changing environmental conditions. However, not much evidence has been gathered to address this question. The following studies were designed to build a comprehensive argument to support this hypothesis for one important coral disease—black band disease (BBD). A meta-analysis of clone libraries identifying the microbial communities associated with BBD reveal important information including that a single cyanobacterial operational taxonomic unit (OTU) was by far the most prevalent OTU in diseased samples, and that the alphaproteobacteria, which include some of the most common bacteria in marine waters, were the most diversely represented. The analysis also showed that samples exhibited regional similarities. An fine and ultrastructural characterization of the disease revealed that the cyanobacteria are prolific borers through the coral skeleton, and that the cyanobacteria penetrate coral tissue, leading to their presence ahead of the main migrating disease band. It was further found that apparently healthy corals exposed to toxins found in BBD, exhibited similar tissue degradation to those infected with BBD. Comparing the disease progression to biofilm formation, it was determined that scouting cyanobacteria may contribute to the migration of the disease through progressive biofilm development over intact coral tissue. Together, these studies provide significant evidence for the hypothesis that BBD is an opportunistic disease, caused by common environmental bacteria, facilitated by the changing environmental conditions associated with climate change.
Resumo:
Lesbian and gay marching and symphonic bands hold rich opportunities for adults to engage in transformative and emancipatory learning experiences.
Resumo:
The purpose of this study was to examine whether a middle school band director's attire had an effect on off-task student behaviors in his classroom. One male middle school band director participated and three of his classes were observed. The study lasted twenty days and consisted of three treatments (casual attire, business casual attire, and formal business attire). A tally sheet was used to determine the number of off-task behaviors per student per minute. The results indicated that in this classroom, the students (of all three classes) were off-task less often when the band director wore business casual attire. This was the clothing that he wore consistently from the beginning of the school year. Straying from this consistency made off-task behaviors in the classroom rise. The most off-task behaviors occurred when the band director wore casual clothing. Off-task behaviors also rose when the band director wore business formal attire.
Resumo:
This paper examines five big band arrangements written during a period of two semesters from 1998-1999. I will provide an overview and performance considerations for each arrangement. Each arrangement uses common conventions such as unison lines, octave doubling, four and five part voicings, found in closed, semi-open, and open position. Approach techniques include diatonic, dominant, diminished, chromatic, and parallel. Choice was based primarily on two considerations: desired texture and the best voice leading options identified to provide each part with a swinging line and maintain melodic integrity. Other conventions applied include chord substitution, upper structure triads, and altered and diminished scales to provide harmonic contrast and color. Each arrangement supplied new challenges and the tunes selected provided the arranger with a diverse experience of styles. The inherent qualities of the melody and harmonic progression of each piece were the primary considerations for selection.
Resumo:
The black band disease (BBD) microbial consortium often causes mortality of reef-building corals. Microbial chemical interactions (i.e., quorum sensing (QS) and antimicrobial production) may be involved in the BBD disease process. Culture filtrates (CFs) from over 150 bacterial isolates from BBD and the surface mucopolysaccharide layer (SML) of healthy and diseased corals were screened for acyl homoserine lactone (AHL) and Autoinducer-2 (AI-2) QS signals using bacterial reporter strains. AHLs were detected in all BBD mat samples and nine CFs. More than half of the CFs (~55%) tested positive for AI-2. Approximately 27% of growth challenges conducted among 19 isolates showed significant growth inhibition. These findings demonstrate that QS is actively occurring within the BBD microbial mat and that culturable bacteria from BBD and the coral SML are able to produce QS signals and antimicrobial compounds. This is the first study to identify AHL production in association with active coral disease.