4 resultados para Avise, John C.: Molecular markers, natural history and evolution

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To chronicle demographic movement across African Asian corridors, a variety of molecular (sequence analysis, restriction mapping and denaturing high performance liquid chromatography etc.) and statistical (correspondence analysis, AMOVA, calculation of diversity indices and phylogenetic inference, etc.) techniques were employed to assess the phylogeographic patterns of mtDNA control region and Y chromosomal variation among 14 sub-Saharan, North African and Middle Eastern populations. The patterns of genetic diversity revealed evidence of multiple migrations across several African Asian passageways as well within the African continent itself. The two-part analysis uncovered several interesting results which include the following: (1) a north (Egypt and Middle East Asia) to south (sub-Saharan Africa) partitioning of both mtDNA and Y chromosomal haplogroup diversity, (2) a genetic diversity gradient in sub-Saharan Africa from east to west, (3) evidence in favor of the Levantine Corridor over the Horn of Africa as the major genetic conduit since the Last Glacial Maximum, (4) a substantially higher mtDNA versus Y chromosomal sub-Saharan component in the Middle East collections, (5) a higher representation of East versus West African mtDNA haplotypes in the Arabian Peninsula populations versus no such bias in the Levant groups and lastly, (6) genetic remnants of the Bantu demographic expansion in sub-Saharan Africa. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the abundance of Cladium jamaicense (Crantz) seeds and three biomarkers in freshwater marsh soils in Shark River Slough (SRS), Everglades National Park (ENP) to determine the degree to which these paleoecological proxies reflect spatial and temporal variation in vegetation. We found that C. jamaicense seeds and the biomarkers Paq, total lignin phenols (TLP) and kaurenes analyzed from surface soils were all significantly correlated with extant aboveground C. jamaicense biomass quantified along a vegetation gradient from a C. jamaicense to a wet prairie/slough (WPS) community. Our results also suggest that these individual proxies may reflect vegetation over different spatial scales: Paq and kaurenes correlated most strongly (R 2 = 0.88 and 0.99, respectively) with vegetation within 1 m of a soil sample, while seeds and TLP reflected vegetation 0–20 m upstream of soil samples. These differences in the spatial scale depicted by the different proxies may be complementary in understanding aspects of historic landscape patterning. Soil profiles of short (25 cm) cores showed that downcore variation in C. jamaicense seeds was highly correlated with two of the three biomarkers (Paq, R 2 = 0.84, p<0.005; TLP, R 2 = 0.97, p<0.0001), and all four of the proxies indicated a recent increase in C. jamaicense biomass at the site. Using a preliminary depth-to-age relationship based on matching charcoal peaks with available ENP fire records (1980-present) specific to our coring site, we found that peak-depths in C. jamaicense seed concentration appeared to correspond to recent minimum water levels (e.g., 1989 and 2001), and low seed abundance corresponded to high water levels (e.g., 1995), consistent with the known autecology of C. jamaicense. In summary, the combination of C. jamaicense seeds and biomarkers may be useful for paleoecological reconstruction of vegetation change and ultimately in guaging the success of ongoing efforts to restore historic hydrologic conditions in the South Florida Everglades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene flow, or the exchange of genes between populations, is important because it determines the evolutionary trajectory of a species, including the relative influences of genetic drift and natural selection in the process of population differentiation. Gene flow differs among species because of variation in dispersal capability and abundances across taxa, and historical forces related to geological or lineage history. Both history and ecology influence gene flow in potentially complicated ways, and accounting for their effects remains an important problem in evolutionary biology. This research is a comparative study of gene flow and life-history in a monophyletic group of stream fishes, the darters. As a first step in disentangling historical and ecological effects, I reconstructed the phylogenetic relationships of the study species from nucleotide sequences in the mtDNA control region. I then used this phylogeny and regional glaciation history to infer historical effects on life-history evolution and gene flow in 15 species of darters. Gene flow was estimated indirectly, using information from 20 resolvable and polymorphic allozyme loci. When I accounted for historical effects, comparisons across taxa revealed that gene flow rates were closely associated with differences in clutch sizes and reproductive investment patterns. I hypothesized that differences in larval dispersal among taxa explained this relationship. Results from a field study of larval drift were consistent with this hypothesis. Finally, I asked whether there was an interaction between species' ecology and genetic differentiation across biogeographically distinct regions. Information from allozymes and mtDNA sequences revealed that life history plays an important role in the magnitude of species divergence across biogeographic boundaries. These results suggested an important association between life histories and rates of speciation following an allopatric isolation event. This research, along with other studies from the literature, further illustrates the enormous potential of North American freshwater fishes as a system for studying speciation processes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The improvement of tropical tree crops using conventional breeding methods faces challenges due to the length of time involved. Thus, like most crops, there is an effort to utilize molecular genetic markers in breeding programs to select for desirable agronomic traits. Known as marker assisted breeding or marker assisted selection, genetic markers associated with a phenotype of interest are used to screen and select material reducing the time necessary to evaluate candidates. As the focus of this research was improving disease resistance in tropical trees, the usefulness of the WRKY gene superfamily was investigated as candidates for generating useful molecular genetic markers. WRKY genes encode plant-specific transcriptional factors associated with regulating plants' responses to both biotic and abiotic stress. ^ One pair of degenerate primers amplified 48 WRKY gene fragments from three taxonomically distinct, economically important, tropical tree crop species: 18 from Theobroma cacao L., 21 from Cocos nucifera L. and 9 from Persea americana Mill. Several loci from each species were polymorphic because of single nucleotide substitutions present within a putative non-coding region of the loci. Capillary array electrophoresis-single strand conformational polymorphism (CAE-SSCP) mapped four WRKY loci onto a genetic linkage map of a T. cacao F2 population segregating for resistance to witches' broom disease. Additionally, PCR primers specific for four T. cacao loci successfully amplified WRKY loci from 15 members of the Byttneriae tribe. A method was devised to allow the reliable discrimination of alleles by CAE-SSCP using only the mobility assigned to the sample peaks. Once this method was validated, the diversity of three WRKY loci was evaluated in a germplasm collection of T. cacao . One locus displayed high diversity in the collection, with at least 18 alleles detected from mobility differences of the product peaks. The number of WRKY loci available within the genome, ease of isolation by degenerate PCR, codominant segregation demonstrated in the F2 population, and usefulness for screening germplasm collections and closely related wild species demonstrates that the WRKY superfamily of genes are excellent candidates for developing a number of genetic molecular markers for breeding purposes in tropical trees. ^