7 resultados para Availability of iron
em Digital Commons at Florida International University
Resumo:
We completed a synoptic survey of iron, phosphorus, and sulfur concentrations in shallow marine carbonate sediments from south Florida. Total extracted iron concentrations typically were 50 μmol g-1 dry weight (DW) and tended to decrease away from the Florida mainland, whereas total extracted phosphorus concentrations mostly were 10 μmol g-1 DW and tended to decrease from west to east across Florida Bay. Concentrations of reduced sulfur compounds, up to 40 μmol g-1 DW, tended to covary with sediment iron concentrations, suggesting that sulfide mineral formation was iron-limited. An index of iron availability derived from sediment data was negatively correlated with chlorophyll a concentrations in surface waters, demonstrating the close coupling of sediment-water column processes. Eight months after applying a surface layer of iron oxide granules to experimental plots, sediment iron, phosphorus, and sulfur were elevated to a depth of 10 cm relative to control plots. Biomass of the seagrass Thalassia testudinum was not different between control and iron addition plots, but individual shoot growth rates were significantly higher in experimental plots after 8 months. Although the iron content of leaf tissues was significantly higher from iron addition plots, no difference in phosphorus content of T. testudinum leaves was observed. Iron addition altered plant exposure to free sulfide, documented by a significantly higher δ34S of leaf tissue from experimental plots relative to controls. Iron as a buffer to toxic sulfides may promote individual shoot growth, but phosphorus availability to plants still appears to limit production in carbonate sediments.
Resumo:
Between 1992 and 2000, we sampled 504 randomly chosen locations in theFlorida Keys, Florida, USA, for the elemental content of green leaves of theseagrass Thalassia testudinum. Carbon content ranged from29.4–43.3% (dry weight), nitrogen content from 0.88–3.96%, andphosphorus content from 0.048–0.243%. N and P content of the samples werenot correlated, suggesting that the relative availability of N and P variedacross the sampling region. Spatial pattern in C:N indicated a decrease in Navailability from inshore waters to the reef tract 10 km offshore;in contrast, the pattern in C:P indicated an increase in P availability frominshore waters to the reef tract. The spatial pattern in N:P was used to definea P-limited region of seagrass beds in Florida Bay and near shore, and anN-limited region of seagrass beds offshore. The close juxtaposition ofN–and P-limited regions allows the possibility that N loading from thesuburban Florida Keys could influence the offshore, N-limited seagrass bedswithout impacting the more nearshore, P-limited seagrass beds. Carbonate - Nutrient lim
Resumo:
Patterns of relative nutrient availability in south Florida suggest spatial differences regarding the importance of nitrogen (N) and phosphorus (P) to benthic primary producers. We did a 14-month in situ fertilization experiment to test predictions of N and P limitation in the subtropical nearshore marine waters of the upper Florida Keys. Six sites were divided into two groups (nearshore, offshore) representing the endpoints of an N: P stoichiometric gradient. Twenty-four plots were established at each site with six replicates of each treatment (1N, 1P, 1N1P, control), for a total of 144 experimental plots. The responses of benthic communities to N and P enrichment varied appreciably between nearshore and offshore habitats. Offshore seagrass beds were strongly limited by nitrogen, and nearshore beds were affected by nitrogen and phosphorus. Nutrient addition at offshore sites increased the length and aboveground standing crop of the two seagrasses, Thalassia testudinum and Syringodium filiforme, and growth rates of T. testudinum. Nutrient addition at nearshore sites increased the relative abundance of macroalgae, epiphytes, and sediment microalgae. N limitation of seagrass in this carbonate system was clearly demonstrated. However, added phosphorus was retained in the system more effectively than N, suggesting that phosphorus might have important long-term effects on these benthic communities. The observed species-specific responses to nutrient enrichment underscores the need to monitor all primary producers when addressing questions of nutrient limitation and eutrophication in seagrass communities.
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. ^ A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.^
Resumo:
Iron oxides and arsenic are prevalent in the environment. With the increase interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs and arsenic. The goal was to understand the environmental behavior of IONPs in regards to their particle size, aggregation and stability, and to determine how this behavior influences IONPs-arsenic interactions. A variety of dispersion techniques were investigated to disperse bare commercial IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable dispersions with particles in the micrometer size range while probe ultrasonication dispersed the particles into stable dispersions of nanometer size ranges for a prolonged period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of different particle sizes, the adsorption of arsenite and arsenate to bare hematite nanoparticles and hematite aggregates were investigated. To understand the difference in the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and hematite aggregates but the rate and capacity of adsorption is dependent upon the hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo redox transformation both microbially and photochemically and these processes can be intertwined. Arsenic speciation studies in the presence of hematite particles were performed and the effect of light on the redox process was preliminary quantified. The redox behavior of arsenite and arsenate were different depending on the hematite particle size, the stability of the suspension and the presence of environmental factors such as microbes and light. The results from this study are important and have significant environmental implications as arsenic mobility and bioavailability can be affected by its adsorption to hematite particles and by its surface mediated redox transformation. Moreover, this study furthers our understanding on how the particle size influences the interactions between IONPs and arsenic thereby clarifying the role of IONPs in the biogeochemical cycling of arsenic.
Resumo:
The microbial metabolism of organic matter (OM) in seagrass beds can create sulfidic conditions detrimental to seagrass growth; iron (Fe) potentially has ameliorating effects through titration of the sulfides and the precipitation of iron-sulfide minerals into the sediment. In this study, the biogeochemical effects of Fe availability and its interplay with sulfur and OM on sulfide toxicity, phosphorous (P) availability, seagrass growth and community structure were tested. The availability of Fe and OM was manipulated in a 2 × 2 factorial experiment arranged in a Latin square, with four replicates per treatment. The treatments included the addition of Fe, the addition of OM, the addition of both Fe and OM as well as no addition. The experiment was conducted in an oligotrophic, iron-deficient seagrass bed. Fe had an 84.5% retention efficiency in the sediments with the concentration of Fe increasing in the seagrass leaves over the course of the experiment. Porewater chemistry was significantly altered with a dramatic decrease in sulfide levels in Fe addition plots while sulfide levels increased in the OM addition treatments. Phosphorus increased in seagrass leaves collected in the Fe addition plots. Decreased sulfide stress was evidenced by heavier δ34S in leaves and rhizomes from plots to which Fe was added. The OM addition negatively affected seagrass growth but increased P availability; the reduced sulfide stress in Fe added plots resulted in elevated productivity. Fe availability may be an important determinant of the impact that OM has on seagrass vitality in carbonate sediments vegetated with seagrasses.
Resumo:
Disturbances alter competitive hierarchies by reducing populations and altering resource regimes. The interaction between disturbance and resource availability may strongly influence the structure of plant communities, as observed in the recolonization of seagrass beds in outer Florida Bay that were denuded by sea-urchin overgrazing. There is no consensus concerning the interaction between disturbance and resource availability on competition intensity (CI). On the other hand, species diversity is dependent on both factors. Peaks in species diversity have been observed to occur when both resource availability and disturbance intensity are high, thus implying that CI is low. Based on this supposition of previous models, I presented the resource-disturbance hypothesis as a graphical model to make predictions of CI as a function of both disturbance intensity and the availability of a limiting resource. The predictions of this model were tested in two experiments within a seagrass community in south Florida, in which transplants of Halodule wrightii were placed into near-monocultures of Syringodium filiforme in a full-factorial array. In the first experiment, two measures of relative CI were calculated based on the changes in the short-shoot number (SS) and of rhizome length (RHL) on the transplants. Both light and disturbance were identified as important factors, though the interaction between light * disturbance was not significant. Relative CISS ranged between 0.2 and 1.0 for the high light and high disturbance treatments and the relative CIRHL < 0 for the same treatments, though results were not significantly different due to high variability and low sample size. These results, including a contour schematic using six data points from the different treatment combinations, preliminarily suggests that the resource-disturbance hypothesis may be used may be used as a next step in developing our understanding of the mechanisms involved in structuring plant communities. Furthermore, the focus of the model is on the outcome of CI, which may be a useful predictor of changes in species diversity. Further study is needed to confirm the results of this study and validate the usefulness of this model in other systems. ^