5 resultados para Audio-Visual Automatic Speech Recognition
em Digital Commons at Florida International University
Resumo:
This study explored the critical features of temporal synchrony for the facilitation of prenatal perceptual learning with respect to unimodal stimulation using an animal model, the bobwhite quail. The following related hypotheses were examined: (1) the availability of temporal synchrony is a critical feature to facilitate prenatal perceptual learning, (2) a single temporally synchronous note is sufficient to facilitate prenatal perceptual learning, with respect to unimodal stimulation, and (3) in situations where embryos are exposed to a single temporally synchronous note, facilitated perceptual learning, with respect to unimodal stimulation, will be optimal when the temporally synchronous note occurs at the onset of the stimulation bout. To assess these hypotheses, two experiments were conducted in which quail embryos were exposed to various audio-visual configurations of a bobwhite maternal call and tested at 24 hr after hatching for evidence of facilitated prenatal perceptual learning with respect to unimodal stimulation. Experiment 1 explored if intermodal equivalence was sufficient to facilitate prenatal perceptual learning with respect to unimodal stimulation. A Bimodal Sequential Temporal Equivalence (BSTE) condition was created that provided embryos with sequential auditory and visual stimulation in which the same amodal properties (rate, duration, rhythm) were made available across modalities. Experiment 2 assessed: (a) whether a limited number of temporally synchronous notes are sufficient for facilitated prenatal perceptual learning with respect to unimodal stimulation, and (b) whether there is a relationship between timing of occurrence of a temporally synchronous note and the facilitation of prenatal perceptual learning. Results revealed that prenatal exposure to BSTE was not sufficient to facilitate perceptual learning. In contrast, a maternal call that contained a single temporally synchronous note was sufficient to facilitate embryos’ prenatal perceptual learning with respect to unimodal stimulation. Furthermore, the most salient prenatal condition was that which contained the synchronous note at the onset of the call burst. Embryos’ prenatal perceptual learning of the call was four times faster in this condition than when exposed to a unimodal call. Taken together, bobwhite quail embryos’ remarkable sensitivity to temporal synchrony suggests that this amodal property plays a key role in attention and learning during prenatal development.
Resumo:
Context: Clinicians use exercises in rehabilitation to enhance sensorimotor-function, however evidence supporting their use is scarce. Objective: To evaluate acute effects of handheld-vibration on joint position sense (JPS). Design: A repeated-measure, randomized, counter-balanced 3-condition design. Setting: Sports Medicine and Science Research Laboratory. Patients or Other Participants: 31 healthy college-aged volunteers (16-males, 15-females; age=23+3y, mass=76+14kg, height=173+8cm). Interventions: We measured elbow JPS and monitored training using the Flock-of-Birds system (Ascension Technology, Burlington, VT) and MotionMonitor software (Innsport, Chicago, IL), accurate to 0.5°. For each condition (15,5,0Hz vibration), subjects completed three 15-s bouts holding a 2.55kg Mini-VibraFlex dumbbell (Orthometric, New York, NY), and used software-generated audio/visual biofeedback to locate the target. Participants performed separate pre- and post-test JPS measures for each condition. For JPS testing, subjects held a non-vibrating dumbbell, identified the target (90°flexion) using biofeedback, and relaxed 3-5s. We removed feedback and subjects recreated the target and pressed a trigger. We used SPSS 14.0 (SPSS Inc., Chicago, IL) to perform separate ANOVAs (p<0.05) for each protocol and calculated effect sizes using standard-mean differences. Main Outcome Measures: Dependent variables were absolute and variable error between target and reproduced angles, pre-post vibration training. Results: 0Hz (F1,61=1.310,p=0.3) and 5Hz (F1,61=2.625,p=0.1) vibration did not affect accuracy. 15Hz vibration enhanced accuracy (6.5±0.6 to 5.0±0.5°) (F1,61=8.681,p=0.005,ES=0.3). 0Hz did not affect variability (F1,61=0.007,p=0.9). 5Hz vibration decreased variability (3.0±1.8 to 2.3±1.3°) (F1,61=7.250,p=0.009), as did 15Hz (2.8±1.8 to 1.8±1.2°) (F1,61=24.027, p<0.001). Conclusions: Our results support using handheld-vibration to improve sensorimotor-function. Future research should include injured subjects, functional multi-joint/multi-planar measures, and long-term effects of similar training.
Resumo:
This study explored the critical features of temporal synchrony for the facilitation of prenatal perceptual learning with respect to unimodal stimulation using an animal model, the bobwhite quail. The following related hypotheses were examined: (1) the availability of temporal synchrony is a critical feature to facilitate prenatal perceptual learning, (2) a single temporally synchronous note is sufficient to facilitate prenatal perceptual learning, with respect to unimodal stimulation, and (3) in situations where embryos are exposed to a single temporally synchronous note, facilitated perceptual learning, with respect to unimodal stimulation, will be optimal when the temporally synchronous note occurs at the onset of the stimulation bout. To assess these hypotheses, two experiments were conducted in which quail embryos were exposed to various audio-visual configurations of a bobwhite maternal call and tested at 24 hr after hatching for evidence of facilitated prenatal perceptual learning with respect to unimodal stimulation. Experiment 1 explored if intermodal equivalence was sufficient to facilitate prenatal perceptual learning with respect to unimodal stimulation. A Bimodal Sequential Temporal Equivalence (BSTE) condition was created that provided embryos with sequential auditory and visual stimulation in which the same amodal properties (rate, duration, rhythm) were made available across modalities. Experiment 2 assessed: (a) whether a limited number of temporally synchronous notes are sufficient for facilitated prenatal perceptual learning with respect to unimodal stimulation, and (b) whether there is a relationship between timing of occurrence of a temporally synchronous note and the facilitation of prenatal perceptual learning. Results revealed that prenatal exposure to BSTE was not sufficient to facilitate perceptual learning. In contrast, a maternal call that contained a single temporally synchronous note was sufficient to facilitate embryos’ prenatal perceptual learning with respect to unimodal stimulation. Furthermore, the most salient prenatal condition was that which contained the synchronous note at the onset of the call burst. Embryos’ prenatal perceptual learning of the call was four times faster in this condition than when exposed to a unimodal call. Taken together, bobwhite quail embryos’ remarkable sensitivity to temporal synchrony suggests that this amodal property plays a key role in attention and learning during prenatal development.
Resumo:
Perception and recognition of faces are fundamental cognitive abilities that form a basis for our social interactions. Research has investigated face perception using a variety of methodologies across the lifespan. Habituation, novelty preference, and visual paired comparison paradigms are typically used to investigate face perception in young infants. Storybook recognition tasks and eyewitness lineup paradigms are generally used to investigate face perception in young children. These methodologies have introduced systematic differences including the use of linguistic information for children but not infants, greater memory load for children than infants, and longer exposure times to faces for infants than for older children, making comparisons across age difficult. Thus, research investigating infant and child perception of faces using common methods, measures, and stimuli is needed to better understand how face perception develops. According to predictions of the Intersensory Redundancy Hypothesis (IRH; Bahrick & Lickliter, 2000, 2002), in early development, perception of faces is enhanced in unimodal visual (i.e., silent dynamic face) rather than bimodal audiovisual (i.e., dynamic face with synchronous speech) stimulation. The current study investigated the development of face recognition across children of three ages: 5 – 6 months, 18 – 24 months, and 3.5 – 4 years, using the novelty preference paradigm and the same stimuli for all age groups. It also assessed the role of modality (unimodal visual versus bimodal audiovisual) and memory load (low versus high) on face recognition. It was hypothesized that face recognition would improve across age and would be enhanced in unimodal visual stimulation with a low memory load. Results demonstrated a developmental trend (F(2, 90) = 5.00, p = 0.009) with older children showing significantly better recognition of faces than younger children. In contrast to predictions, no differences were found as a function of modality of presentation (bimodal audiovisual versus unimodal visual) or memory load (low versus high). This study was the first to demonstrate a developmental improvement in face recognition from infancy through childhood using common methods, measures and stimuli consistent across age.
Resumo:
More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested.^ Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264.^