8 resultados para Atmospheric secondary organic aerosol
em Digital Commons at Florida International University
Resumo:
The detailed organic composition of atmospheric fine particles with an aerodynamic diameter smaller than or equal to 2.5 micrometers (PM2.5) is an integral part of the knowledge needed in order to fully characterize its sources and transformation in the environment. For the study presented here, samples were collected at 3-hour intervals. This high time resolution allows gaining unique insights on the influence of short- and long-range transport phenomena, and dynamic atmospheric processes. A specially designed sequential sampler was deployed at the 2002-2003 Baltimore PM-Supersite to collect PM2.5 samples at a 3-hourly resolution for extended periods of consecutive days, during both summer and winter seasons. Established solvent-extraction and GC-MS techniques were used to extract and analyze the organic compounds in 119 samples from each season. Over 100 individual compounds were quantified in each sample. For primary organics, averaging the diurnal ambient concentrations over the sampled periods revealed ambient patterns that relate to diurnal emission patterns of major source classes. Several short-term releases of pollutants from local sources were detected, and local meteorological data was used to pinpoint possible source regions. Biogenic secondary organic compounds were detected as well, and possible mechanisms of formation were evaluated. The relationships between the observed continuous variations of the concentrations of selected organic markers and both the on-site meteorological measurements conducted parallel to the PM2.5 sampling, and the synoptic patterns of weather and wind conditions were also examined. Several one-to-two days episodes were identified from the sequential variation of the concentration observed for specific marker compounds and markers ratios. The influence of the meteorological events on the concentrations of the organic compounds during selected episodes was discussed. It was observed that during the summer, under conditions of pervasive influence of air masses originated from the west/northwest, some organic species displayed characteristics consistent with the measured PM2.5 being strongly influenced by the aged nature of these long-traveling background parcels. During the winter, intrusions from more regional air masses originating from the south and the southwest were more important.
Resumo:
The detailed organic composition of atmospheric fine particles with an aerodynamic diameter smaller than or equal to 2.5 micrometers (PM 2.5) is an integral part of the knowledge needed in order to fully characterize its sources and transformation in the environment. For the study presented here, samples were collected at 3-hour intervals. This high time resolution allows gaining unique insights on the influence of short- and long-range transport phenomena, and dynamic atmospheric processes. A specially designed sequential sampler was deployed at the 2002-2003 Baltimore PM Supersite to collect PM2.5 samples at a 3-hourly resolution for extended periods of consecutive days, during both summer and winter seasons. Established solvent-extraction and GC-MS techniques were used to extract and analyze the organic compounds in 119 samples from each season. Over 100 individual compounds were quantified in each sample. For primary organics, averaging the diurnal ambient concentrations over the sampled periods revealed ambient patterns that relate to diurnal emission patterns of major source classes. Several short-term releases of pollutants from local sources were detected, and local meteorological data was used to pinpoint possible source regions. Biogenic secondary organic compounds were detected as well, and possible mechanisms of formation were evaluated. The relationships between the observed continuous variations of the concentrations of selected organic markers and both the on-site meteorological measurements conducted parallel to the PM2.5 sampling, and the synoptic patterns of weather and wind conditions were also examined. Several one-to-two days episodes were identified from the sequential variation of the concentration observed for specific marker compounds and markers ratios. The influence of the meteorological events on the concentrations of the organic compounds during selected episodes was discussed. It was observed that during the summer, under conditions of pervasive influence of air masses originated from the west/northwest, some organic species displayed characteristics consistent with the measured PM2.5 being strongly influenced by the aged nature of these long-traveling background parcels. During the winter, intrusions from more regional air masses originating from the south and the southwest were more important.
Resumo:
A comprehensive forensic investigation of sensitive ecosystems in the Everglades Area is presented. Assessing the background levels of contamination in these ecosystems represents a vital resource to build up forensic evidence required to enforce future environmental crimes within the studied areas. This investigation presents the development and validation of a fractionation and isolation method for two families of herbicides commonly applied in the vicinity of the study area, including phenoxy acids like 2,4-D, MCPA, and silvex; as well as the most common triazine-based herbicides like atrazine, prometyne, simazine and related metabolites like DIA and DEA. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used to isolate the analytes from abiotic matrices containing large amounts of organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-), and Chemical Ionization in the positive mode (APCI+) were used to perform the characterization of the herbicides of interest.
Resumo:
Soils play a central role in the dynamics of biospheric carbon and in climate change. They contain the largest carbon stock of terrestrial ecosystems and return to the atmosphere a significant proportion of carbon fixed by photosynthesis. Soils of tropical forests are tremendously important in the carbon cycle because they receive the largest organic matter inputs, they have the largest respiration rates, and they are among the largest carbon reservoirs among world soils. This research assesses the main components of the soil carbon dynamics in primary (PF) and secondary (SF) tropical forests in Colombia. I evaluated the production, stocks, and decomposition rates of aboveground detritus as well as the stocks, growth, mortality, and decomposition of fine roots in these two forest types. Soil carbon outputs were evaluated as total soil, heterotrophic, and root respiration. The stocks of soil organic carbon down to 4 m deep in these two cover types and in degraded pastures (PAS) were also evaluated. ^ Soil inputs of organic carbon from above and belowground sources were lower in SF than in PF. Litterfall in SF was 58% and production of fine root detritus was 60% of that in PF. When production of woody detritus and palm fronds was considered, the difference between these forest types was even larger. However, outputs of mineral carbon through heterotrophic soil respiration were similar; in SF they equaled 97% of those in PF. As a result, soil carbon balance was positive in PF and negative in SF. Despite that soil carbon balances suggest that soils of SF are losing carbon, soil carbon stocks of SF were higher than of degraded pastures, suggesting that they have already started to recover soil carbon stocks lost under degraded pastures. This discrepancy can be partially explained by the effect of drier conditions on heterotrophic soil respiration as a consequence of a moderate El Niño event during the period of soil respiration measurements. The positive carbon balance in soils of PF despite the El Niño event, suggests that soils of PF accumulated about 664 Kg C ha−1 yr−1. Therefore, soil carbon dynamics mainly depended on successional status of vegetation and on climatic conditions. ^
Resumo:
The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.
Resumo:
The goal of this project was to develop a rapid separation and detection method for analyzing organic compounds in smokeless powders and then test its applicability on gunshot residue (GSR) samples. In this project, a total of 20 common smokeless powder additives and their decomposition products were separated by ultra performance liquid chromatography (UPLC) and confirmed by tandem mass spectrometry (MS/MS) using multiple reaction monitoring mode (MRM). Some of the targeted compounds included diphenylamines, centralites, nitrotoluenes, nitroglycerin, and various phthalates. The compounds were ionized in the MS source using simultaneous positive and negative electrospray ionization (ESI) with negative atmospheric pressure chemical ionization (APCI) in order to detect all compounds in a single analysis. The developed UPLC/MS/MS method was applied to commercially available smokeless powders and gunshot residue samples recovered from the hands of shooters, spent cartridges, and smokeless powder retrieved from unfired cartridges. Distinct compositions were identified for smokeless powders from different manufacturers and from separate manufacturing lots. The procedure also produced specific chemical profiles when tested on gunshot residues from different manufacturers. Overall, this thesis represents the development of a rapid and reproducible procedure capable of simultaneously detecting the widest possible range of components present in organic gunshot residue.^
Resumo:
The goal of this investigation was to examine how sediment accretion and organic carbon (OC) burial rates in mangrove forests respond to climate change. Specifically, will the accretion rates keep pace with sea-level rise, and what is the source and fate of OC in the system? Mass accumulation, accretion and OC burial rates were determined via 210Pb dating (i.e. 100 year time scale) on sediment cores collected from two mangrove forest sites within Everglades National Park, Florida (USA). Enhanced mass accumulation, accretion and OC burial rates were found in an upper layer that corresponded to a well-documented storm surge deposit. Accretion rates were 5.9 and 6.5 mm yr− 1 within the storm deposit compared to overall rates of 2.5 and 3.6 mm yr− 1. These rates were found to be matching or exceeding average sea-level rise reported for Key West, Florida. Organic carbon burial rates were 260 and 393 g m− 2 yr− 1 within the storm deposit compared to 151 and 168 g m− 2 yr− 1 overall burial rates. The overall rates are similar to global estimates for OC burial in marine wetlands. With tropical storms being a frequent occurrence in this region the resulting storm surge deposits are an important mechanism for maintaining both overall accretion and OC burial rates. Enhanced OC burial rates within the storm deposit could be due to an increase in productivity created from higher concentrations of phosphorus within storm-delivered sediments and/or from the deposition of allochthonous OC. Climate change-amplified storms and sea-level rise could damage mangrove forests, exposing previously buried OC to oxidation and contribute to increasing atmospheric CO2 concentrations. However, the processes described here provide a mechanism whereby oxidation of OC would be limited and the overall OC reservoir maintained within the mangrove forest sediments.
Resumo:
Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^