4 resultados para Atmospheric Conditions.
em Digital Commons at Florida International University
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.<.
Resumo:
An Ab Initio/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C2H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C2H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA’s Cassini/Huygens mission found a high concentration of C2H and CN from photolysis of ethyne (C2H2) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth’s primordial atmospheric conditions. The C2H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan’s atmosphere, the ISM, and cold celestial bodies.
Resumo:
High-resolution tower observations of turbulent transport processes in the coastal atmospheric surface layer show that the exchange coefficients for momentum, enthalpy, and moisture behave differently for different environmental and atmospheric conditions. The drag coefficient is closely tied to wind speed and turbulent intensity. The exchange coefficient for enthalpy shows a dependence on stability. Analysis of the turbulent kinetic energy budget yields a new parameterization framework that well explains the observed variation of the drag coefficient, particularly at low wind speeds.
Resumo:
Florida Bay is a highly dynamic estuary that exhibits wide natural fluctuations in salinity due to changes in the balance of precipitation, evaporation and freshwater runoff from the mainland. Rapid and large-scale modification of freshwater flow and construction of transportation conduits throughout the Florida Keys during the late nineteenth and twentieth centuries reshaped water circulation and salinity patterns across the ecosystem. In order to determine long-term patterns in salinity variation across the Florida Bay estuary, we used a diatom-based salinity transfer function to infer salinity within 3.27 ppt root mean square error of prediction from diatom assemblages from four ~130 year old sediment records. Sites were distributed along a gradient of exposure to anthropogenic shifts in the watershed and salinity. Precipitation was found to be the primary driver influencing salinity fluctuations over the entire record, but watershed modifications on the mainland and in the Florida Keys during the late-1800s and 1900s were the most likely cause of significant shifts in baseline salinity. The timing of these shifts in the salinity baseline varies across the Bay: that of the northeastern coring location coincides with the construction of the Florida Overseas Railway (AD 1906–1916), while that of the east-central coring location coincides with the drainage of Lake Okeechobee (AD 1881–1894). Subsequent decreases occurring after the 1960s (east-central region) and early 1980s (southwestern region) correspond to increases in freshwater delivered through water control structures in the 1950s–1970s and again in the 1980s. Concomitant increases in salinity in the northeastern and south-central regions of the Bay in the mid-1960s correspond to an extensive drought period and the occurrence of three major hurricanes, while the drop in the early 1970s could not be related to any natural event. This paper provides information about major factors influencing salinity conditions in Florida Bay in the past and quantitative estimates of the pre- and post-South Florida watershed modification salinity levels in different regions of the Bay. This information should be useful for environmental managers in setting restoration goals for the marine ecosystems in South Florida, especially for Florida Bay.