6 resultados para Assemblages of marine sponges

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Peruvian coast is one the best examples of cross-ecosystem food web exchanges, in which resources from one of the richest marine ecosystems subsidize consumers in one of the driest deserts on Earth. Marine subsidies are resources that originate in the marine ecosystem, and that contribute to increase the density of consumers in the recipient ecosystem. I examined the effects of marine subsidies on animal populations in the Peruvian coastal desert. ^ I combined several approaches to study the linkages between marine resources and terrestrial consumers, such as surveying the spatial distribution and estimating the relative abundance of terrestrial consumers, studying the diet of geckos and lizards through stomach content analyses, and examining the desert food web with carbon and nitrogen stable isotope analyses. ^ I found that the distribution and diet of desert consumers were tightly coupled to the availability of marine subsidies. I revealed linkages along two pathways of nutrient fluxes: tidal action that washes ashore macroalgae and cadavers of marine organisms, and animal transport in places where pinnipeds and seabirds congregate for reproduction. In the first pathway, intertidal algivivores made marine resources available to terrestrial consumers by moving between the intertidal and supratidal zone. The relative contribution of terrestrial and algal carbon sources varied among terrestrial consumers, because scorpions assimilated a lower proportion of energy from macroalgae than did geckos and solifuges. In the second pathway, I found that pinniped colonies influenced the diet of desert consumers, and contributed to support large populations of lizards and geckos. By combining field observations, and stomach and stable isotope analyses, I constructed a simplified food web for a large sea lion colony, showing the number of trophic levels that originate from pinniped-derived nutrients. ^ My study demonstrates the enormous importance of marine resources for the diet of desert consumers. The near absence of rainfall along the Peruvian coast promotes an extreme dependence of terrestrial consumers on marine resources, and causes permanent food web effects that are affected by temporal variability in marine productivity, rather then temporal patterns of desert plant growth. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predators exert strong direct and indirect effects on ecological communities by intimidating their prey. Non-consumptive effects (NCEs) of predators are important features of many ecosystems and have changed the way we understand predator-prey interactions, but are not well understood in some systems. For my dissertation research I combined a variety of approaches to examine the effect of predation risk on herbivore foraging and reproductive behaviors in a coral reef ecosystem. In the first part of my dissertation, I investigated how diet and territoriality of herbivorous fish varied across multiple reefs with different levels of predator biomass in the Florida Keys National Marine Sanctuary. I show that both predator and damselfish abundance impacted diet diversity within populations for two herbivores in different ways. Additionally, reef protection and the associated recovery of large predators appeared to shape the trade-off reef herbivores made between territory size and quality. In the second part of my dissertation, I investigated context-dependent causal linkages between predation risk, herbivore foraging behavior and resource consumption in multiple field experiments. I found that reef complexity, predator hunting mode, light availability and prey hunger influenced prey perception of threat and their willingness to feed. This research argues for more emphasis on the role of predation risk in affecting individual herbivore foraging behavior in order to understand the implications of human-mediated predator removal and recovery in coral reef ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Peruvian coast is one the best examples of cross-ecosystem food web exchanges, in which resources from one of the richest marine ecosystems subsidize consumers in one of the driest deserts on Earth. Marine subsidies are resources that originate in the marine ecosystem, and that contribute to increase the density of consumers in the recipient ecosystem. I examined the effects of marine subsidies on animal populations in the Peruvian coastal desert. I combined several approaches to study the linkages between marine resources and terrestrial consumers, such as surveying the spatial distribution and estimating the relative abundance of terrestrial consumers, studying the diet of geckos and lizards through stomach content analyses, and examining the desert food web with carbon and nitrogen stable isotope analyses. I found that the distribution and diet of desert consumers were tightly coupled to the availability of marine subsidies. I revealed linkages along two pathways of nutrient fluxes: tidal action that washes ashore macroalgae and cadavers of marine organisms, and animal transport in places where pinnipeds and seabirds congregate for reproduction. In the first pathway, intertidal algivivores made marine resources available to terrestrial consumers by moving between the intertidal and supratidal zone. The relative contribution of terrestrial and algal carbon sources varied among terrestrial consumers, because scorpions assimilated a lower proportion of energy from macroalgae than did geckos and solifuges. In the second pathway, I found that pinniped colonies influenced the diet of desert consumers, and contributed to support large populations of lizards and geckos. By combining field observations, and stomach and stable isotope analyses, I constructed a simplified food web for a large sea lion colony, showing the number of trophic levels that originate from pinniped-derived nutrients. My study demonstrates the enormous importance of marine resources for the diet of desert consumers. The near absence of rainfall along the Peruvian coast promotes an extreme dependence of terrestrial consumers on marine resources, and causes permanent food web effects that are affected by temporal variability in marine productivity, rather then temporal patterns of desert plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Southeast Florida’s continual urban expansion will potentially increase anthropogenic pollution in adjacent coastal marine systems. Furthermore, increased nutrient loads could have detrimental effects on the already threatened Florida Reef Tract. The present study uses a stable isotopic approach to determine the sources and the impact of nutrients on the Florida Reef Tract. δ13C and δ15N analysis of macroalgae, sponges, and sediment were analyzed in order to determine nutrient inputs in this region. While δ13C data did not display any significant trends spatially, δ15N values of the majority of biota exhibited a strong East to West gradient with more enriched values close to shore. Relative enrichment in δ15N values were measured for sediments sampled along the Florida Reef Tract in comparison to a pristine Marquesas Keys sediment core. The δ15N data also implies that shoreline anthropogenic nutrients have more nutrient loading implications on reefs than major point sources.