10 resultados para Article Taxonomic Terms: Argulus foliaceus
em Digital Commons at Florida International University
Resumo:
Social issues are assessed from different perspectives. The purpose here is to evaluate one short article in terms of interpretive social theory and then briefly assess it in terms of functionalism, conflic theory and critical theory.
Resumo:
The present paper investigates post-Soviet non-state and state higher educational institutions in terms of students’ perceptions of school curriculum, quality of teaching, available educational resources and overall organization in their higher educational institutions.
Resumo:
This paper introduces a new construct that we term Math Mediated Language (MML) focusing on the notion that common or everyday terms with mathematical meanings are important building blocks for students’ mathematical reasoning. A survey given to 96 pre-service early childhood educators indicated clear patterns of perceptions of these terms.
Resumo:
This dictionary provides a portable, easy to use, and inexpensive bilingual list of geological terms for those in the earth sciences and engineering who have to work in both English and Spanish. The dictionary includes two major sections. The first comprises English terms, arranged alphabetically, alongside their Spanish equivalents; the second section comprises Spanish terms arranged alphabetically, alongside their English equivalents.
Resumo:
Current methods of understanding microbiome composition and structure rely on accurately estimating the number of distinct species and their relative abundance. Most of these methods require an efficient PCR whose forward and reverse primers bind well to the same, large number of identifiable species, and produce amplicons that are unique. It is therefore not surprising that currently used universal primers designed many years ago are not as efficient and fail to bind to recently cataloged species. We propose an automated general method of designing PCR primer pairs that abide by primer design rules and uses current sequence database as input. Since the method is automated, primers can be designed for targeted microbial species or updated as species are added or deleted from the database. In silico experiments and laboratory experiments confirm the efficacy of the newly designed primers for metagenomics applications.
Resumo:
Jacquemontia reclinata House (Convolvulaceae) is a federally-listed endangered species endemic to coastal strand habitat of southeastern Florida, from Palm Beach to Miami-Dade counties. Although J. reclinata is currently defined as a species, its taxonomic distinctness has never been analyzed using phylogenetic evidence. In order to assess the evolutionary distinctness of J. reclinata and identify its closest relatives, internal transcribed spacer (ITS) regions within nuclear ribosomal DNA were sequenced, and the sequence data was used to reconstruct a phylogeny of Jacquemontia. The study included the three putative relatives of J. reclinata and all other species within Jacquemontia known to occur in the Greater Antilles and Bahamas, except for three species. Results concur with previous morphological studies, which suggest that J. reclinata is closely related to J. cayensis Britton, J. curtisii Peter, and J. havanensis Urban. These three species and J. reclinata form an unresolved clade. Therefore, it is not certain which of these Caribbean species is sister to J. reclinata. The lack of resolution within the clade that includes J. reclinata implies that the taxa within the clade are evolutionarily similar. Future taxonomic studies of J. reclinata should focus in resolving relationships within the Jacquemontia reclinata clade.
Resumo:
This study aims to understand individual differences in preschooler’s early comprehension of spatial language. Spatial language is defined as terms describing location, direction, shape, dimension, features, orientation, and quantity (e.g location, shape). Spatial language is considered to be one of the important factors in the development of spatial reasoning in the preschool years (Pruden, Levine, & Huttenlocher, 2011). In recent years, research has shown spatial reasoning is an important predictor of successes in STEM (Science, Technology, Engineering, and Mathematics) fields (e.g. Shea, Lubinski & Benbow, 2001; Wai, Lubinksi &Benbow, 2009). The current study focuses on when children begin to comprehend spatial terms, while previous work has mainly focused on production of spatial language. Identifying when children begin to comprehend spatial terms could lead to a better understanding of how spatial reasoning develops. We use the Intermodal Preferential Looking paradigm (IPLP) to examine three-year-old children’s ability to map spatial terms to visual representations. Fourteen spatial terms were used to test these abilities (e.g. bottom, diamond, longer). For each test trial children were presented with two different stimuli simultaneously on the left and right sides of a television screen. A female voice prompted the child to find the target spatial relation (e.g. “can you find the boy pointing to the bottom of the window”; Figure 1). A Tobii X60 eye-tracker was used to record the child’s eye gaze for each trial. For each child the proportion of looking to the target image divided by their total looking during the trial was calculated; this served as the dependent variable. Proportions above .50 indicated that the child had correctly mapped the spatial term to the target image. Preliminary data shows that the number of words comprehended in the IPLP task is correlated to parental report of the child’s comprehension of spatial terms (r[14]=.500, p<.05).
Resumo:
This study aims to understand individual differences in preschooler’s early comprehension of spatial language. Spatial language is defined as terms describing location, direction, shape, dimension, features, orientation, and quantity (e.g location, shape). Spatial language is considered to be one of the important factors in the development of spatial reasoning in the preschool years (Pruden, Levine, & Huttenlocher, 2011). In recent years, research has shown spatial reasoning is an important predictor of successes in STEM (Science, Technology, Engineering, and Mathematics) fields (e.g. Shea, Lubinski & Benbow, 2001; Wai, Lubinksi &Benbow, 2009). The current study focuses on when children begin to comprehend spatial terms, while previous work has mainly focused on production of spatial language. Identifying when children begin to comprehend spatial terms could lead to a better understanding of how spatial reasoning develops. We use the Intermodal Preferential Looking paradigm (IPLP) to examine three-year-old children’s ability to map spatial terms to visual representations. Fourteen spatial terms were used to test these abilities (e.g. bottom, diamond, longer). For each test trial children were presented with two different stimuli simultaneously on the left and right sides of a television screen. A female voice prompted the child to find the target spatial relation (e.g. “can you find the boy pointing to the bottom of the window”; Figure 1). A Tobii X60 eye-tracker was used to record the child’s eye gaze for each trial. For each child the proportion of looking to the target image divided by their total looking during the trial was calculated; this served as the dependent variable. Proportions above .50 indicated that the child had correctly mapped the spatial term to the target image. Preliminary data shows that the number of words comprehended in the IPLP task is correlated to parental report of the child’s comprehension of spatial terms (r[14]=.500, p<.05).